
Project Number 780251

D5.6 Text Processing Pipelines (Final Version)

Version 1.0
8 July 2020

Final

Public Distribution

Edge Hill University

Project Partners: Alpha Bank, ATB, Centrum Wiskunde & Informatica, CLMS, Edge Hill University,
GMV, OTE, SWAT.Engineering, The Open Group, University of L′Aquila,
University of Namur, University of York, Volkswagen

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
TYPHON Project Partners accept no liability for any error or omission in the same.

© 2020 Copyright in this document remains vested in the TYPHON Project Partners.

D5.6 Text Processing Pipelines (Final Version)

Project Partner Contact Information

Alpha Bank ATB
Vasilis Kapordelis Sebastian Scholze
40 Stadiou Street Wiener Strasse 1
102 52 Athens 28359 Bremen
Greece Germany
Tel: +30 210 517 5974 Tel: +49 421 22092 0
E-mail: vasileios.kapordelis@alpha.gr E-mail: scholze@atb-bremen.de
Centrum Wiskunde & Informatica CLMS
Tijs van der Storm Antonis Mygiakis
Science Park 123 Mavrommataion 39
1098 XG Amsterdam 104 34 Athens
Netherlands Greece
Tel: +31 20 592 9333 Tel: +30 210 619 9058
E-mail: storm@cwi.nl E-mail: a.mygiakis@clmsuk.com
Edge Hill University GMV Aerospace and Defence
Yannis Korkontzelos Almudena Sánchez González
St Helens Road Calle Isaac Newton 11
Ormskirk L39 4QP 28760 Tres Cantos
United Kingdom Spain
Tel: +44 1695 654393 Tel: +34 91 807 2100
E-mail: yannis.korkontzelos@edgehill.ac.uk E-mail: asanchez@gmv.com
OTE SWAT.Engineering
Theodoros E. Mavroeidakos Davy Landman
99 Kifissias Avenue Science Park 123
151 24 Athens 1098 XG Amsterdam
Greece Netherlands
Tel: +30 697 814 7618 Tel: +31 633754110
E-mail: tmavroeid@ote.gr E-mail: davy.landman@swat.engineering
The Open Group University of L′Aquila
Scott Hansen Davide Di Ruscio
Rond Point Schuman 6, 5th Floor Piazza Vincenzo Rivera 1
1040 Brussels 67100 L’Aquila
Belgium Italy
Tel: +32 2 675 1136 Tel: +39 0862 433735
E-mail: s.hansen@opengroup.org E-mail: davide.diruscio@univaq.it
University of Namur University of York
Anthony Cleve Dimitris Kolovos
Rue de Bruxelles 61 Deramore Lane
5000 Namur York YO10 5GH
Belgium United Kingdom
Tel: +32 8 172 4963 Tel: +44 1904 325167
E-mail: anthony.cleve@unamur.be E-mail: dimitris.kolovos@york.ac.uk
Volkswagen
Behrang Monajemi
Berliner Ring 2
38440 Wolfsburg
Germany
Tel: +49 5361 9-994313
E-mail: behrang.monajemi@volkswagen.de

Page ii Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

Document Control
Version Status Date

0.1 Document outline 21 April 2020
0.2 First draft 10 June 2020
0.3 First full draft 15 June 2020
0.4 Further editing draft 1 July 2020
0.5 Internal review 3 July 2020
0.6 Changes based on internal review 8 July 2020
1.0 Final 8 July 2020

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page iii

D5.6 Text Processing Pipelines (Final Version)

Table of Contents

1 Introduction 1

1.1 Overview . 1

1.2 Intentions . 2

1.3 Outcomes . 2

2 Background and Literature Review 3

2.1 Text Mining & Text Processing . 3

2.2 Natural Language Processing Tasks . 3

2.2.1 Natural Language Processing Toolkits . 6

2.3 Processing Pipelines . 6

2.4 Parallel and Distributed Processing Frameworks . 7

2.4.1 Apache UIMA DUCC . 7

2.4.2 Apache Spark . 7

2.4.3 Apache Flink . 8

2.5 Natural Language Processing in Typhon . 9

3 Methodology 11

3.1 Datasets . 11

3.1.1 Amazon Product Reviews Dataset . 11

3.1.2 CoNLL-2003 - Named Entity Recognition Dataset 12

3.1.3 Custom Weather Named Entity Recognition Dataset 12

3.2 Use case Scenarios . 12

3.2.1 Experimental Use Cases . 13

3.2.2 Partners Use Cases . 14

3.3 Experimental Settings . 15

3.3.1 Experimental Setup . 15

3.3.1.1 Cluster Configuration . 15

3.3.1.2 Data Pre-processing . 16

3.3.1.3 NLP Toolkit . 16

3.3.2 Evaluation Settings . 16

3.3.3 Controlled Permutations . 17

Page iv Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

4 Results 18

4.1 Experiment Evaluation . 18

4.1.1 Speed . 18

4.1.2 Data Size . 18

4.1.3 Throughput . 18

4.2 Distributed Text Processing Framework Design Evaluation 19

5 Evaluation 21

5.1 Discussion . 21

5.1.1 Importance of Serialisability in Distributed Frameworks 21

5.1.2 Data and Task Parallelism . 21

6 Natural Language Analysis Engine 22

6.1 Overview . 22

6.2 Development Technologies . 24

6.2.1 Libraries . 24

6.2.2 Technologies . 25

6.3 Description of Components . 25

6.3.1 External Facing NLAE REST API . 25

6.3.1.1 processText . 26

6.3.1.2 queryTextAnalytics . 26

6.3.1.3 deleteDocument . 27

6.3.2 Internal Components . 27

6.3.2.1 Job Manager . 27

6.3.2.2 Staging Manager . 28

6.3.2.3 Job Executor . 28

6.3.2.4 Flink Monitoring API . 28

6.4 Deployment and Scalability . 28

7 Risks and Limitations 30

8 Typhon Requirements 31

9 Conclusion 33

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page v

D5.6 Text Processing Pipelines (Final Version)

Executive Summary

In this deliverable we present the results of experimental testing of Natural Language Processing (NLP)
pipelines within parallel and distributed frameworks. These pipelines previously discussed in deliverable D5.4,
were evaluated in this report from three performance perspectives; namely speed, data size and throughput.
This report firstly begins by reviewing prior work in text processing, describes what constitutes a Natural Lan-
guage Processing (NLP) pipeline and discusses three NLP tasks adopted for scrutiny in this report, i.e., Named
Entity Recognition, Sentiment analysis and Co-reference resolution. We then discuss distributed frameworks
which can be used to scale out the processing of each of the pipelines, i.e., Apache Spark, Apache Flink,
UIMA DUCC, and therefore provide practical performance gains due to parallelism. Following on from the
literature review of distributed technologies, we present the methodology used for experimental testing by de-
tailing the datasets used, along with the technical setting used to perform NLP tasks. In our results, we report
the performance benchmarks of NLP tasks produced in distributed environments and discuss the important
findings discovered while using distributed frameworks for this purpose. We then outline how the pipelines
are integrated within a Natural Language Analysis Engine (NLAE), which exposes NLP functionality within
the TYPHON ecosystem through a RESTful API. Lastly, we discuss risks and limitations to testing of NLP
pipelines within distributed environments, review project requirements related to text processing and conclude
with remarks on future work.

Page vi Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

1 Introduction

Natural Language Processing (NLP) pipelines are fundamental in building generative knowledge from unstruc-
tured textual data [1]. Recently, research and development in NLP has turned towards distributed computing
[2, 3] in order to mitigate the computational cost of extracting knowledge by orchestrating resources within
a cluster of computation nodes. In particular, technologies such as Spark and Flink have become de-facto
standards for scaling out computations in both academia and industry [4], whereas other frameworks such as
UIMA DUCC [5] have been developed as alternative frameworks to provide built-in support for distributed
text processing.

With respect to TYPHON, this deliverable follows on from work completed in D2.2 and D5.4. In this deliver-
able, we present the findings of computational benchmarks for NLP pipelines within a controlled environment.
We used a small cluster of standard specification computers to investigate the ability of NLP pipelines to run in
a distributed processing environment, and evaluated the success of this attempt. The configuration of the clus-
ter we employed consisted of a master node which managed the execution of jobs, a dedicated Elasticsearch
back-end node which served as our data source/sink and two slave nodes which were dedicated for the com-
puting tasks within each pipeline. We implemented the NLP pipelines in all cases using the Stanford CoreNLP
toolkit as it is very popular within the literature. Lastly, we sourced samples for experimental testing using
Amazon product reviews [6], the CoNLL-2003 dataset [7] and a custom-built dataset to conduct tests for all
pipelines under each distributed framework.

Our investigation into Distributed Text Processing Frameworks (DTPF) identified significant performance
gains when comparing distributed frameworks to a linear Java baseline. We also discovered architectural limi-
tations to the Stanford CoreNLP toolkit when used in distributed environments and also identified drawbacks
of DUCC, when processing pipelines within a cluster of small size. These results indicate that scaling out NLP
tasks is an effective strategy to reduce computational cost. However, the results also reveal dependencies on
toolkits used in such pipelines and limitations associated to frameworks that require a large number of cluster
nodes. Our results imply that researchers pursuing performance gains in parallel processing of NLP pipelines
should consider carefully the cluster configuration, the toolkit compatibility and granularity in distributed en-
vironments, and the dependencies of a framework within a cluster. Consequently, the experimentation and
evaluation performed led to the design and development of the Natural Language Analysis Engine (NLAE).
The NLAE, integrated into TYPHON, provides natural language analysis services in the context of unstruc-
tured textual data.

1.1 Overview

The deliverable consists of eight sections. Section 2 focuses on presenting the NLP pipelines that were de-
veloped to test the text processing capabilities of different Distributed Text Processing Frameworks (DTPF).
It also provides related background and reviews existing frameworks that offer parallel processing. Section 3
outlines the methodological procedure used to systematically test NLP tasks within a cluster configuration. In
section 4, we present the findings of running NLP pipelines using different DTPFs and discuss the levels of
performance achieved in each context. Section 5 examines the significant findings from experimental testing
and discusses the importance of the results for future development in distributed NLP research. Section 6 dis-
cussed how the outcome of the pipeline development was incorporated into the NLAE, which integrates NLP
functionality into TYPHON. In section 7, we elaborate on the risks and limitations encountered in testing,
which could reinforce further research in the field to alleviate the challenges faced in our objectives. Lastly,
section 8 looks at the progress made towards the TYPHON project requirements and section 9 concludes this
deliverable and outlines avenues for future work.

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 1

D5.6 Text Processing Pipelines (Final Version)

1.2 Intentions

The objective of this deliverable is to provide details about the design and development of the Natural Language
Analysis Engine (NLAE), which is integrated into TYPHON to provide dedicated NLP functionality. To this
effect, we present the findings of our experimentation with distributed NLP pipelines using existing DTPFs
and highlight the similarities among them in terms of performance on common NLP tasks. This report aims
to discuss the difficulty in configuring frameworks for distributed use and examine underlying dependencies
which could make one alternative more viable than another.

1.3 Outcomes

The primary outcome of this deliverable is the Natural Language Analysis Engine (NLAE) that has been
implemented to be integrated into TYPHON to provide natural language analysis capabilities. The design de-
cisions of the NLAE were guided by a set of evaluation experiments that we conducted to generate benchmarks
for NLP pipelines under different Distributed Text Processing Frameworks (DTPF). These pipelines were de-
veloped for experimental testing of Named Entity Recognition (NER), Sentiment Analysis and Co-reference
Resolution, which are some of the most common NLP tasks in practice.

Page 2 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

2 Background and Literature Review

In this section, we review literature related to Natural Language Processing pipelines, namely the three tasks
adopted for the purposes of this deliverable: Named Entity Recognition, Sentiment Analysis and Co-reference
Resolution. We also discuss the Distributed Text Processing Frameworks used in the experimental evaluation
and provide a comparison of their features for distributed processing.

2.1 Text Mining & Text Processing

Text mining refers to methods and approaches used to facilitate “the discovery by computer of new, previously
unknown information, by automatically extracting information from different written resources” [8]. Its theo-
retical basis is closely related to data mining, however it principally differs, as natural language is the unit of
analysis denoting both implicit (i.e., semantic) or explicit (i.e., syntactic) representations within text.

Text processing is a specialisation of text mining which aims to automatically produce outputs (i.e., annota-
tions) from a source, in order to leverage deeper knowledge embedded within such unstructured text. Text
processing is typically offered in NLP pipelines, i.e. chains of components that analyse and manipulate textual
information to generate helpful outputs as annotated text. In the following subsections, we discuss common
NLP tasks and how they are chained together to build text processing pipelines.

2.2 Natural Language Processing Tasks

In deliverable D5.4, we developed a type system consisting of tasks associated with NLP functions. In this
report, we present experimental testing of three core NLP features distributed across a physical cluster which
are a subset of the TYPHON type system. The following are some of the most common components that
provide NLP functionality.

Tokenisation: Tokenisation is the process of dividing the input text into subunits called tokens [9]. A Tokeniser
is a component that performs the tokenisation of input text. It takes a stream of characters as an input and splits
these to generate a list of tokens based on a pre-defined model or rule-base. Figure 1 shows a simple example
of a tokeniser that splits the sentence into individual tokens.

Figure 1: Text Tokenisation Example

Sentence Splitting: Sometimes, NLP applications require large complex input text to be split into sentences,
to mine more meaningful information out. Sentence splitters are components that provide the functionality
to split large pieces of text into smaller manageable and intelligible sentences [10]. Figure 2 shows a basic
example of a sentence splitter.

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 3

D5.6 Text Processing Pipelines (Final Version)

Figure 2: Sentence Splitting Example

N-Grams: N-Grams are sets of co-occurring n words/tokens within a given context window [11], where n is a
real number. N-Gram extraction, as a statistical NLP technique, is very useful in calculating the probabilities
of occurrence and co-occurrence of terms, which helps define statistical dependence relations between them in
text. For example, for the sentence “The cat sat on the mat” figure 3 shows the n-grams where n=2.

Figure 3: N-Grams Example

Part-Of-Speech (POS) Tagging: The process of labeling words according to the lexical category they belong
to is called Part-of-Speech (POS) tagging. A token in text can be a “noun”, “verb”, “pronoun” etc. according
to the role it plays in the sentence. POS tagging is used to highlight these roles played by the tokens in the
context of the given input to build syntax trees. Figure 4 shows the corresponding POS tags for the sentence
“I like to play football”.

Figure 4: Part-Of-Speech Tagging Example. PRON stands for pronoun and PART for infinitive
particle.

Page 4 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

Named Entity Recognition: Named Entity Recognition (NER) is the task of extracting named entities from
unstructured text, which correspond to pre-defined categories, such as names, organisations, locations and time.
Figure 5 shows an example of NER annotation on text. NER is important mainly because it is a foundation
for further high-level NLP tasks, which depend on entity references, such as Co-reference resolution. For this
reason, NER was considered in the benchmark experiments across distributed frameworks.

Figure 5: Named Entity Recognition Example

Sentiment Analysis: Sentiment Analysis (SA) is the semantic procedure of extracting opinions from text. Its
output is usually represented in the form of a polarity, positive and negative. Sentiment analysis is critical
in contemporary NLP because a majority of unstructured text is sourced from consumers or actors, whose
opinions may be subjectively skewed based on their individual beliefs and consequently by their utterances.
Due to the prominence and need of identifying sentiment in text, we have chosen to investigate this NLP task
in a distributed manner. Figure 6 shows results of a sentiment analysis example.

Figure 6: Sentiment Analysis Example

Co-reference Resolution: Co-reference resolution is the procedure of identifying the syntactic relationship
between entities and expressions that refer to them within a document as shown in figure 7. Co-reference
resolution has been studied extensively, as its application in discourse analysis uncovers background knowl-
edge, which can be important in text summarisation. For this purpose, we have chosen to include Co-reference
resolution in our experiments using distributed frameworks.

Figure 7: Co-reference Resolution Example

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 5

D5.6 Text Processing Pipelines (Final Version)

2.2.1 Natural Language Processing Toolkits

A toolkit can be defined as a “a single utility program, a set of software routines or a complete integrated
set of software utilities that are used to develop and maintain applications and databases”. Toolkits provide
researchers and developers with functions and routines that work out-of-the-box to prototype and build soft-
ware applications quickly. There is a wide variety of open source NLP tools available in many programming
languages.

Stanford CoreNLP1 is a well-known and one of the most popular NLP toolkits, widely used in academic
research. Standford CoreNLP provides statistical NLP, deep learning NLP, and rule-based NLP functionality
for multiple programming languages including Java. CoreNLP provides turn-key functionality for most of the
NLP tasks with minimum code customisation. Moreover, it provides pre-trained models for different NLP
tasks available for multiple languages. The CoreNLP library is often referred to as the state-of-the-art for NLP
and it is for these reasons that we have used Stanford CoreNLP to build our pipelines for the Natural Language
Analysis Engine (NLAE).

OpenNLP2 is an Apache Foundation project that also provides pre-built components for common NLP tasks.
OpenNLP is extensible and is written for easy integration with other libraries and has a good API for commu-
nicating with existing code-base. However OpenNLP is computationally more demanding than CoreNLP and
therefore takes more time to perform common tasks [12].

2.3 Processing Pipelines

A processing pipeline can be defined as a set of pre-defined procedures to incrementally build and transform
data towards a desired output. For example, in Figure 8, it can be observed that to generate NER labels for a
given text, the text needs to be tokenised, then enriched with Part-Of-Speech (POS) tags and finally processed
through shallow parsing. These single steps constitute a chain of computational processes which form an
NLP pipeline. In our experiments, we employed data parallelism through respective distributed frameworks to
distribute and execute these pipelines across resources within a physical cluster. In this approach, we are able
to improve performance by distributing the processing tasks across resources on remotely located machines.

Figure 8: NER Text Processing Pipeline

In the following subsection, we discuss each of the distributed frameworks employed in this deliverable and
contrast their unique features and capabilities.

1https://nlp.stanford.edu/software/
2https://opennlp.apache.org/

Page 6 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

2.4 Parallel and Distributed Processing Frameworks

Parallel processing frameworks in recent years have provided a method for avoiding the bottleneck of scaling
up resources, by allowing the scaling out of processes via simultaneous execution in parallel. This is primar-
ily done using computer clusters, i.e. groups of computers working in tandem to breakdown computations in
parallel. Distributed frameworks are the software technology which facilitates this strategy, and although ab-
stractions and techniques may differ between solutions, the frameworks tend to align in their approach of using
parallelisation of computer code and nodes to drive down computational costs. In our previous deliverable,
D5.4 we discussed several frameworks which provided such functionality and in the following subsections we
discuss each in detail before providing a comparison of their shared features.

2.4.1 Apache UIMA DUCC

Distributed UIMA Cluster Computing (DUCC) 3 is a Linux cluster controller designed to scale out UIMA
pipelines for high throughput collection processing jobs, as well as for low latency real-time applications [5].
DUCC is built on top of UIMA Asynchronous Scaleout (UIMA-AS), a scalability replacement for the UIMA
Collection Processing Manager (CPM) that allows UIMA pipelines to be run across a collection of process-
ing nodes. DUCC is designed to deal with complex UIMA pipelines with large memory requirements by
distributed execution on multiple threads and nodes. The major components of DUCC include:

• Orchestrator (OR): provides the essential operational functionalities of the system.
• Resource Manager (RM): allocates the constrained resources amongst user requests on a fair-share

policy.
• Services Manager (SM): facilitates the control and monitoring of services.
• Agents: one-per-node, responsible for deploying, monitoring and controlling processing on each node

respectively.
• JobDriver (JD): Manage workitem from the CollectionReader to the analytical pipeline and report

performance statistics.
• Process Manager (PM): monitor and control processes throughout the cluster.

DUCC’s Job Driver identifies pipelines that can run in parallel and executes them on different processing
nodes, as shown in Figure 10. Similarly to Flink, DUCC manages errors in the pipeline, hence, if part of the
process fails to execute, the whole process does not have to be repeated.

2.4.2 Apache Spark

Spark5 is a general-purpose framework which specialises in large-scale batch processing. Although it was re-
cently extended in terms of stream processing functionality, it was not strategically designed to handle large
volumes of live data, environments in which memory is sparse or situations in which there is low tolerance for
latency requirements [13]. Spark’s unique offering is that it’s core abstraction Resilient Distributed Datasets
(RDD) is fault tolerant and this abstraction conducts in-memory computing which avoids traditional I/O bot-
tlenecks of relational systems. Spark has become hugely popular among academic and business circles [14]
primarily because it offers a simple, efficient and mature solution to big data processing.

3https://uima.apache.org/doc-uimaducc-whatitam.html
4https://uima.apache.org/d/uima-ducc-1.0.0/duccbook.html#x1-24800015.2
5https://spark.apache.org/

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 7

D5.6 Text Processing Pipelines (Final Version)

Figure 9: Apache UIMA DUCC Platform Deployment4

Spark follows a master-slave architecture, shown in Figure 11, which involves a driver node that orchestrates
jobs through an application-level Spark context. Each context is handled by multiple worker nodes, who
have the single purpose of being job executors. When a Spark application is submitted to the driver, it is
internally converted into a Directed Acyclic Graph (DAG), which is then converted into a physical execution
plan consisting of staged tasks for individual workers to execute. On completion of tasks, the driver is notified
and a Spark application is successfully processed.

2.4.3 Apache Flink

Flink6 is a leading open-source solution for parallel processing. It excels at processing both bound, i.e., fixed,
and unbound data sets within contexts which require low data latency and high fault tolerance [15]. Flink’s
unique offering is it’s in-memory performance combined with an internal program optimiser which improves
processing performance. Flink uses a DataSet and DataStream API to implement applications for process-
ing and these are represented as bound and unbound datasets, respectively. Flink also follows a master-slave
architecture shown in Figure 12, with JobManagers controlling jobs and TaskManagers processing them. Ap-
plications submitted to Flink are represented as streaming dataflows and consist of streams and transformation

6https://flink.apache.org/

Page 8 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

Figure 10: Apache UIMA DUCC Collection Processing Job Model

Figure 11: Apache Spark Master-Slave Architecture

operations. The streams represent an intermediate result, while transformations take a stream and apply oper-
ations, which change one DataStream into another. Each dataflow may have one to many sources, a number of
desired transformations and one to many sinks. Dataflows at runtime are represented similarly to DAGs within
Spark, however Flink automatically reconfigures streaming dataflows to best utilise the resources available
from TaskManagers within the cluster, reducing management overhead on the part of the designer [16].

2.5 Natural Language Processing in Typhon

With ubiquitous and growing storage of polystores within the TYPHON ecosystem, it is necessary to enrich
such data with annotations based on the structure and meaning of documents stored, as this augments devel-
oper actions and expands empirical inference. Data is a source of learning from the past, and as TYPHON
provides scalable storage in heterogeneous environments, it makes sense to offer a dedicated NLP facility that
enhances its analytical capabilities. Users of TYPHON can then request or act upon extracted knowledge to be
better informed about document characteristics, enabling greater strategic intuition [17]. Moreover, the abil-

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 9

D5.6 Text Processing Pipelines (Final Version)

Figure 12: Apache Flink Master-Slave Architecture

ity to scale up NLP text analysis to meet expanding volumes of data is a significant research area and field of
experimental challenge [2]. A traditional linear NLP structure would be inadequate for what TYPHON has
envisioned, as this would result in bottlenecks and poor performance throughput. Hence, we have focused on
DTPFs as architectures which can consistently mitigate computational costs and increase throughput.

The NLAE outlined within this deliverable is a tailored solution for this purpose. It integrates into TYPHON
as an endpoint to TYPHONQL as shown in Figure 13. The NLAE receives queries and requests, processing
these internally in parallel as NLP tasks and outputs the result to an ElasticSearch sink. Therefore, the NLAE
functions as an on-demand NLP gateway within TYPHON without exposing NLP abstraction to unnecessary
sources. Furthermore, the NLAE integrates into the TYPHON type system by performing a lookup of the
text modelling tasks currently supported. In this way, the NLAE is able to transform a requested query into
an annotated result, with the concealed benefit of parallelism. In the following section, we explain how we
compared different distribution frameworks and the structure we used to test the performance of DTPFs for
suitability within the NLAE.

Figure 13: Natural Language Analysis Engine in Typhon

Page 10 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

3 Methodology

In this section we outline the methodology that was adopted to evaluate the different Distributed Text Process-
ing Frameworks (DTPF). We provide information about the datasets that were used for our experimentation
and how these were mapped in our Elasticsearch server. Next we give details of the physical cluster that was
used to run these experiments and outline the different pipelines that were developed for the experimental
and partner use case scenarios. Finally we provide insights to the evaluation criteria that were used for the
comparative analysis of the different DTPFs.

3.1 Datasets

For our evaluations, we have run experiments for the different pipelines that we designed on publicly available
datasets. The datasets that have been used for evaluating the DTPFs are:

• Amazon Product Reviews Dataset
• CoNLL-2003 - (English) Named Entity Recognition Dataset
• Custom Weather Named Entity Recognition Dataset

3.1.1 Amazon Product Reviews Dataset

The Amazon Product Reviews dataset consists of 142.8 million user reviews from May 1996 until July 2014
[6]. The full dataset contains some duplicate reviews with a total size of 20GB. Smaller subsets of the dataset
are available for experimentation purposes and have been divided into reviews of products “per-category”.
For example, the reviews_Books_5 dataset containing user reviews on books bought from Amazon consists of
8,898,041 reviews with a compressed size of 3GB and uncompressed size of 8.9GB. The uncompressed json
file consists of one-review-per-line with the following format:

{
"reviewerID": "A2SUAM1J3GNN3B",
"asin": "0000013714",
"reviewerName": "J. McDonald",
"helpful": [2, 3],
"reviewText": "I bought this for my husband who plays the piano. He is

having a wonderful time playing these old hymns. The music is at times
hard to read because we think the book was published for singing from
more than playing from. Great purchase though!",

"overall": 5.0,
"summary": "Heavenly Highway Hymns",
"unixReviewTime": 1252800000,
"reviewTime": "09 13, 2009"

}

where:

• reviewerID is the ID of the reviewer, e.g. A2SUAM1J3GNN3B
• asin is the ID of the product, e.g. 0000013714
• reviewerName is the name of the reviewer
• helpful is a helpfulness rating of the review, e.g. 2/3

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 11

D5.6 Text Processing Pipelines (Final Version)

• reviewText is the text of the review
• overall is the rating of the product
• summary is a summary of the review
• unixReviewTime is the time of the review (unix time)
• reviewTime is the time of the review (raw)

3.1.2 CoNLL-2003 - Named Entity Recognition Dataset

The CoNLL-2003 Named Entity Recognition dataset for English language consists of a total of 1393 news
articles with 219,553 sentences and 301,418 tokens [7]. The dataset uses the Inside–outside–beginning (IOB)
tagging scheme with one word per line along with its corresponding Part-of-Speech (PoS) tag and empty lines
representing sentence boundaries. The dataset has been used for the training, development and testing of NER
taggers. Figure 14 shows an example sentence from the dataset:

Figure 14: CoNLL-2003 NER Dataset

A custom script was developed to read data from the original dataset and format it in the schema required by
the Elasticsearch mapping. Since the original dataset had a small number of articles, entries were duplicated to
increase the size of the resulting dataset. As the goal of our experiments was not to test the accuracy of the NLP
components, but the effect of data size on the distributed processing pipelines, data duplication technique was
acceptable. Initially sentence boundaries were used as markers for individual data objects, i.e. one sentence per
entry in the Elasticsearch index. During the duplication process, N-number of sentences, where N = 3, . . . , 10
were concatenated to create longer text entries.

3.1.3 Custom Weather Named Entity Recognition Dataset

The third dataset used in our experiments was generated in-house by collecting weather emails from the Me-
teosafe website7. Meteosafe provides periodic emails about the current weather conditions in an area of inter-
est. Data was collected by registering to the service and receiving weather updates every 15-minutes for two
locations. Text from a total number of 8,640 emails was used to generate the dataset. As with the CoNLL-
2003 dataset, the emails dataset was augmented with data duplication to increase the size of the dataset for our
experiments. Figure 15 shows a sample email from the weather dataset.

3.2 Use case Scenarios

To evaluate the performance of the Distributed Text Processing Frameworks (DTPFs), our evaluation frame-
work consisted of the following use case scenarios.

7https://meteosafe.com/

Page 12 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

Figure 15: Meteosafe Weather Email

• Experimental Use Cases
• Partner Use Cases

3.2.1 Experimental Use Cases

To evaluate the performance of the DTPFs, separate NLP pipelines were designed for each of the frameworks
and compared to a Java baseline. This baseline replicated the NLP source code of other tests, however im-
plemented no parallelism within its environment, therefore was our control measurement in experiments. We
utilised the following use cases for testing NLP pipelines within each of the frameworks:

Sentiment Analysis for Amazon Product Reviews Dataset Sentiment Analysis is an NLP task that aims
to identify affective states, polarity or subjective opinion of actors from the context of natural language. We
used the Stanford CoreNLP Sentiment Analysis classifier to classify reviews in the dataset. The pipelines for
sentiment analysis for all the DTPFs consisted of a tokeniser, that tokenises the input into individual tokens,
the sentence splitter, that splits inputs based on the sentence boundaries, the parser, that parses the tokens per
sentence to generate the sentiment of the sentence, as shown in Figure 16. The CoreNLP sentiment analyser

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 13

D5.6 Text Processing Pipelines (Final Version)

only generates the sentiment for individual sentences, hence heuristics are applied to get the overall sentiment
of a paragraph.

Figure 16: Sentiment Analysis Pipeline for Amazon Dataset

Named Entity Recognition for the CoNLL-2003 NER Dataset Named Entity Recognition is the NLP task
of tagging annotations of named entities on a given document. In the Stanford CoreNLP toolkit, the pipeline
for the NER Tagger tokenises the input into individual tokens, then splits the input text by sentence boundaries
and then assigns a Part-Of-Speech (POS) tag to each token. These tokens are then lemmatised and finally the
corresponding NER tag is allocated to each token as shown in Figure 17.

Figure 17: NER Pipeline for CoNLL-2003 NER Dataset

Co-reference Resolution for the CoNLL-2003 NER Dataset Co-reference resolution aims to identify all
expressions that refer to shared entities within a document. To perform Co-reference resolution, the CoreNLP
library tokenises the input, splits the input into sentences and adds corresponding POS tags to each token. It
then performs lemmatisation and generates a NER tag for each token. The tokens are then parsed to generate
their dependencies, which are then used to calculate co-reference. The pipeline for co-reference resolution is
shown in Figure 18

Figure 18: Co-Reference Resolution Pipeline for CoNLL-2003 NER Dataset

3.2.2 Partners Use Cases

A custom Weather Entity Tagger was designed for the project partners Volkswagen and ATB during the course
of the project. The pipeline to evaluate the performance of the tagger with respect to the DTPFs included a
CoreNLP standalone Tokeniser, to tokenise the input, a CoreNLP sentence splitter, to split input sentences, and
a CoreNLP Custom-Trained NER Tagger to tag weather entities in the data. The pipeline is shown in Figure
19

Page 14 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

Figure 19: NER Pipeline for Custom Weather Emails Dataset

3.3 Experimental Settings

The following subsections present the experimental and evaluation settings that were used for experimentation
in our evaluation framework.

3.3.1 Experimental Setup

In this subsection we discuss the hardware configuration of the cluster used for experimentation, the preparation
steps that allowed to experiment with data of various sizes and the effect of the cluster size.

3.3.1.1 Cluster Configuration Each of the use case pipelines have been executed on a standalone clus-
ter which consists of one Master-Node and three Slave-Nodes. as shown in Figure 20. The specification of
each system in the cluster is shown in Table 1. Slave-Node1 and Slave-Node2 were configured to run as
slaves/worker nodes for all the DTPFs, while Slave-Node3 was configured to run as the Elasticsearch server.

Figure 20: Experiment Cluster Setup

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 15

D5.6 Text Processing Pipelines (Final Version)

This was done to ensure that the I/O operations to the Elasticsearch have minimum processing overhead. All
the DTPFs were installed on the cluster with default configuration parameters specified in their documentation.

Table 1: Machine Specifications for the Cluster

Node CPU Cores RAM (GB) OS
Master Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz 8 16 Ubuntu 16.04 Xenial

Slave-Node1 Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz 8 32 Ubuntu 16.04 Xenial
Slave-Node2 Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz 8 32 Ubuntu 16.04 Xenial
Slave-Node3 Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz 8 32 Ubuntu 16.04 Xenial

3.3.1.2 Data Pre-processing As discussed in section 3.1, three different datasets were used in the eval-
uation of the DTPFs. To simulate ’big-data’ datasets we duplicated instances within each dataset, augmenting
their size. We did this as our goal is not to measure performance metrics associated with the individual com-
ponents, but the performance of the DTPFs on distributed pipelines. To create a more realistic scenario we
indexed documents using the Elasticsearch cluster.

3.3.1.3 NLP Toolkit All pipelines designed for evaluation used the pre-trained models available for the
Stanford CoreNLP library. Stanford CoreNLP is one of the leading Open Source projects that provides a num-
ber of language analysis tools written in Java under the GNU General Public License 8. Apart from providing
tools that work out-of-the-box, Stanford CoreNLP also provides pre-trained models for common NLP tasks for
seven different languages. The following models were used for the NLP tasks in our experimental pipelines:

Table 2: NLP Toolkit Specifications

Task Classifier Model Specification
Sentiment Analysis Recursive Neural Tensor Network pre-packaged-model
Named-Entity Recognition Conditional Random Field english.conll.4class.distsim.crf.ser.gz
Co-reference Resolution Deterministic pre-packaged-model
Custom Named-Entity Recognition Conditional Random Field ATB-ner-model-de.ser-V5.gz

3.3.2 Evaluation Settings

As described in the previous sections, the focus of our evaluation was the performance of the Distributed Text
Processing Frameworks on similar NLP tasks. To ensure constant times in the I/O operations the standard
Elasticsearch Java API 9 was used to read and write data from Elasticsearch. All pipelines used the same
Stanford CoreNLP classifiers and models to process the text. We evaluated the performance of the DTPFs on
three different metrics, i.e. speed, data size and throughput. The evaluation settings used to benchmark the
DTPFs for our experiments are explained in Table 3.

8http://www.gnu.org/licenses/gpl-2.0.html
9https://www.elastic.co/guide/en/elasticsearch/reference/6.8/api-java.html

Page 16 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

Table 3: Evaluation Settings

Unit Measure
Speed Time in minutes required to complete tasks on different dataset sizes
Data size N is the number of documents, where N = 1000, . . . , 100000
Throughput Documents successfully processed per minute

3.3.3 Controlled Permutations

We tested the pipelines with different sample sizes and cluster sizes (1-slave node and 2-slave node settings)
to quantify the effect of these changes. Each pipeline was run five times and the average throughput was
used as our marker against the baseline. The adaptation of cluster size, given our small cluster, suggested that
throughput grew proportional on the number of slaves within the cluster for both Spark and Flink. Interestingly,
this was not observed for UIMA DUCC for light-weight pipelines, such as NER. This was because the time
required to annotate each item was very short, hence a bottleneck was created by the JobDriver that passed too
many items causing a deadlock. For Sentiment Analysis, which is a more complex task, UIMA DUCC showed
similar traits as Spark and Flink, and the job performance for a 2-node cluster was better than that of 1-node
cluster.

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 17

D5.6 Text Processing Pipelines (Final Version)

4 Results

In this section, we discuss the evaluation benchmarks resulting from NLP pipelines processed through the
Distributed Text Processing Frameworks (DTPF) on our experimental datasets. We additionally describe and
identify the factors on which these frameworks differ in practice.

4.1 Experiment Evaluation

4.1.1 Speed

As specified in section 3.3.2, we evaluated the DTPFs from three perspectives; speed, size of data and through-
put. Each pipeline was designed to run an NLP pipeline on the chosen dataset with the underlying DTPF man-
aging the distribution of the pipeline across the cluster. To create a baseline benchmark, we ran the pipelines
as a traditional linear Java Application on a single machine. For a sample of 100,000 documents, it can be ob-
served in Table 4 that the baseline benchmark for speed was considerably high across all three NLP tasks. The
distributed frameworks increased throughput by several orders of magnitude, most notably in the case of the
computationally expensive Co-reference and Sentiment Analysis tasks.

Table 4: Speed: Time taken to complete 100k documents

NLP Task Java Spark Flink UIMA DUCC
Named Entity Recognition 380 mins 88 mins 88 mins 270 mins

Co-reference 4340 mins 672 mins 624 mins 723 mins
Sentiment Analysis 4320 mins 624 mins 680 mins 666 mins

4.1.2 Data Size

The pipelines designed to perform the three NLP tasks were run on different data sizes to assess the effect of
the size of input data on the performance of the DTPF. Different workloads ranging from 1000 documents to
100k documents were experimented with to find if the performance of the underlying DTPF was correlated
with the size of input data. In almost all the cases no significant correlation was seen between processing rate
and data size for any of the DTPFs except for UIMA DUCC. In case of UIMA DUCC, the size of data appeared
to have a considerable effect on the initialisation time of the application.

4.1.3 Throughput

The last evaluation metric of our framework was throughput. Throughput is the rate at which each DTPF
processed the data. To this effect, throughput was directly influenced by the type of NLP task being performed.
For computationally expensive tasks, such as Sentiment analysis and Co-reference resolution, the throughput
of the frameworks was adversely affected. This showed a direct correlation between the NLP component and
the throughput of the framework.

Page 18 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

Table 5: Throughput: Documents processed per minute

Throughput: Docs/Minute
NLP Task Spark Flink UIMA DUCC

Named Entity Recognition 1136 1136 370
Co-reference 148 160 143

Sentiment Analysis 152 148 149

4.2 Distributed Text Processing Framework Design Evaluation

In this section, we examine the structural differences among distributed frameworks and discuss how they
affect development using each respective technology. Table 6 presents some of the core differences between
the frameworks examined in this deliverable. The main abstraction in Spark is Resilient Distributed Datasets
(RDDs) which for all purposes are distributed collections of data which are partitioned across nodes within
the cluster and actioned in parallel. For Flink, the primary abstractions are DataSet and DataStream which are
used for distributed batch and streaming applications, respectively. For UIMA DUCC, the Common Analysis
Structure (CAS) is the central data structure. UIMA provides a native Java interface to CAS, called JCas, that
can represent features as Java objects. Generating a CAS object is a computationally expensive task which
adversely affects the performance of DUCC in small-sized clusters.

Table 6: Comparison of Distributed Frameworks

Spark Flink DUCC
Data Model RDD DataStream Common Analysis Structure (CAS)

Computation Model Micro-batch Streams Collection
Memory Optimisation Manual Automatic Manual

Although from an implementation point-of-view Spark and Flink frameworks are actioned similarly (through
transformers/operators such as map and reduce), their computational models differ considerably. Spark utilises
a micro-batch processing model which combines the advantages of executing on large volumes of data at rest,
with a continuous flow operator which segments data to a series of micro-batches. Flink conversely adopts a
operator-based continuous flow model which executes data as it arrives. This fundamental difference means
that the context in which data is supplied for processing matters and also indicates from our experiments that
both frameworks perform sufficiently in the context of batch processes.

The last difference between the frameworks we identified was how internal memory was optimised. In Spark,
memory is configured, meaning that the application needed to be manually optimised given the context of re-
sources within the cluster. Flink goes a step further by employing built-in program optimisations to streamline
the execution of jobs and smooth spikes that can potentially occur. UIMA DUCC on the other hand uses the
job configuration settings to ensure that each application receives the exact amount of memory it needs.

It is important to mention here that we were limited in our capability to perform task parallelism as the inher-
ent design structure of the Stanford CoreNLP toolkit meant that each node needed to construct an annotation
pipeline rather than having this serialised and shared (via master) through the network. Moreover the proce-
dure of loading pipelines with properties were fundamentally serial processes, which compromised the ability
to break the pipeline into more granular processes. This correspondingly decreased throughput on each slave
node by duplicating and serialising computational efforts. Furthermore, the Stanford CoreNLP toolkit faces

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 19

D5.6 Text Processing Pipelines (Final Version)

compatibility issues within serialised environments (i.e., edu.stanford.nlp.pipeline.StanfordCoreNLP not im-
plementing a serialisable interface), which directly impacts its performance in distributed environments. This,
however, identifies a significant limitation to an existing software tool which can reinforce the design and di-
rection of distributed NLP systems through selective integration of NLP toolkits which are compatible within
distributed environments. In our utility of distributed frameworks for NLP processing, it was Flink which was
the most reliable, transparent and compatible with the processing we required. It is our recommendation that
Flink be used in circumstances similar in nature to this deliverable, due to its stability, ease of customisation
and functionality that it delivers.

Page 20 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

5 Evaluation

In this section, we examine the critical discussion points uncovered from conducting distributed research us-
ing NLP pipelines. We firstly examine the importance of serialisable classes in distributed environments (i.e.,
master-slave architectures), then discuss the potential performance gains by combining data and task paral-
lelism, where possible, and lastly we discuss the comparability issues that NLP toolkits face when granularity
is low.

5.1 Discussion

The following subsections highlight the research implications of our experimentation. We first describe the
serialisability issues faced with Stanford CoreNLP and then discuss the perspectives of data and task paralleli-
sation.

5.1.1 Importance of Serialisability in Distributed Frameworks

A major finding in our experiments was the bottleneck faced by one of the most widely
used NLP toolkits in the literature. This was primarily due to the toolkit’s Annotator object
(edu.stanford.nlp.pipeline.StanfordCoreNLP) not being Serialisable, in effect not anticipating an NLP object
being shared between JVM’s within a distributed cluster. The implication of this design structure means that
without the process of serialisation, the master portion of an application program has no ability to share an
NLP object with its many workers, duplicating the efforts of many slaves to reconstruct objects which should
in principle be shared. This design bottleneck directly impacts parallelism by duplicating CPU usage, as the
time required for building an object is longer than the time required for deserialisation (i.e., initialising from
cache). Moreover, as cluster computing is highly dependent on effective communication, core Serialisation
tuning techniques, such as Kryo Serialisation, in both Spark and Flink are unavailable, reducing the ability
for distributed frameworks to manage computational complexity. This underlying design choice of serialisa-
tion inherently influences research outcomes and therefore should be given strict consideration when designing
NLP pipelines in distributed environments.

5.1.2 Data and Task Parallelism

While data parallelism is often achieved by scaling out a problem to simultaneous workers, task parallelism is
often more difficult and contextual in highly coupled pipelines. Task parallelism seeks to identify the granu-
larity of a job and parallelise segments of asynchronous pipeline code which can be concurrently executed in
memory on the same data in order to mitigate the costs of running linear chains of code. In our experiments,
we found that the Stanford CoreNLP Annotator object was not designed to be granular as the single Annota-
tor object is made to load pipeline flags (i.e., NLP components) from a Properties object on initialisation. This
means that segmenting a pipeline would mean creating n number of Annotator objects, hence incrementing
computational costs. Our research indicates that NLP toolkits and pipelines more susceptible to task paral-
lelism would offer the best of both worlds for research outcomes when combined with data parallelism. As
this deliverable has shown, existing frameworks deliver significant proportional performance gains based on
input size via data parallelism. The best scenario for DTPFs would then be to augment this performance gain
by leveraging toolkits compatible with task parallelism, to gain proportional performance improvements on the
number of independent, i.e., non-serial, tasks performed. Following this recommendation would lead research
outcomes to produce maximum performance gains in distributed environments.

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 21

D5.6 Text Processing Pipelines (Final Version)

6 Natural Language Analysis Engine

In this section, we discuss the containerised product of our NLP workflows within the Natural Language
Analysis Engine (NLAE), a standalone lookup for TYPHON which provides on-request NLP functionality.
NLAE has been developed to support the internal TYPHON type-system and service requests through a REST
API.

6.1 Overview

The Natural Language Analysis Engine (NLAE) is a self-contained standalone analysis engine, that integrates
into the TYPHON ecosystem to provide on-demand Natural Language Processing capabilities. The NLAE
interfaces with TYPHON through a REST API, which allows the end-user to send queries to process, query
and delete data as shown in Figure 21.

Figure 21: Natural Language Analysis Engine

Data to be processed by the NLAE is transferred from TYPHON through API requests. When a request to
process data is received, NLAE maps the data to an ElasticSearch index mapping. The ElasticSearch mapping
describes the schema of JSON documents which includes information about the data types of fields as well as
how to index them in Lucene indexes. The index mapping was defined in consultation with the project partners
to ensure a consistent schema is used for all data saved in the ElasticSearch indexes. Below we provide the
mapping description that is used to create new indexes in ElasticSearch:

{
"mappings" : {
"_doc" : {
"properties" : {
"entityType" : {

"type" : "text",
"fields" : {

"keyword" : {
"type" : "keyword",

}

Page 22 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

}
},
"fieldName" : {

"type" : "text",
"fields" : {

"keyword" : {
"type" : "keyword",

}
}

},
"id" : {

"type" : "text",
"fields" : {

"keyword" : {
"type" : "keyword",

}
}

},
"nlpFeatures" : {

"type" : "text",
"fields" : {

"keyword" : {
"type" : "keyword",

}
}

},
"text" : {

"type" : "text",
"fields" : {

"keyword" : {
"type" : "keyword",

}
}

},
"workflowName" : {

"type" : "text",
"fields" : {

"keyword" : {
"type" : "keyword",

}
}

}
}

}
}

}

Once data has been stored in the ElasticSearch index, the Job Scheduler schedules a job with the workflowName
and an internal API call is sent to the Job Manager to start the job for the given ElasticSearch index. The user
can send an API call to query the results for a job. If the job is completed, NLAE starts sending the results,
otherwise a "job in progress" message is returned. Below is the list of NlpTaskTypes currently supported by
the NLAE:

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 23

D5.6 Text Processing Pipelines (Final Version)

• ParagraphSegmentation
• SentenceSegmentation
• Tokenisation
• PhraseExtraction
• nGramExtraction
• POSTagging
• Lemmatisation
• Stemming
• DependencyParsing
• Chunking
• SentimentAnalysis
• TextClassification
• TopicModelling
• TermExtraction
• NamedEntityRecognition
• RelationExtraction
• CoreferenceResolution

6.2 Development Technologies

We integrated a wide range of Java-based open-source technologies in the development of NLAE. The deploy-
ment of NLAE is achieved through the orchestration of containerized microservices. We employ libraries and
technologies that facilitate NLAE as a micro service, which will be discussed in the following subsections.

6.2.1 Libraries

• Springboot (2.2.4): Springboot helps in resolving two main elements in the deployment of NLAE,
dependencies and configurations. Springboot delivers a production-ready deployment of NLAE which
saves developers from having to have prior technical knowledge of development in order to use service
deployment.

• ElasticSearch (6.8.1): ElasticSearch is a distributed full-text search engine based on the Lucene library.
ElasticSearch supports multi-tenancy (i.e., is a software which is able to serve many users) and provides
real-time analytics search, which is important in the context of NLAE that needs to scale to large vol-
umes of requests. Its integration into NLAE has been realised through a Java REST API used by NLP
workflows to perform datastore operations and persistently store annotated entities.

• JacksonXML (2.10.3): JacksonXML is a serialisation technology based on the Jackson library which
assists in the deployment of NLAE. JacksonXML integrates with Springboot and supports NLAE by
providing marshalling/unmarshalling functionality in scenarios where XML processing is required.

• Swagger (2.9.2): Swagger is an open-source framework which supports the construction of APIs within
the deployment of NLAE. Swagger automatically identifies annotations within developer code and
builds RESTful web services with documentation, in order to support the deployment and access of
API requests for developers.

• Spring-Fox (2.9.2): Spring-Fox is an open-source framework in the Spring ecosystem which automates
JSON API documentation. We utilized Spring-Fox as it naively integrated with other libraries in NLAE
and reduced the efforts on the part of the developer.

Page 24 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

6.2.2 Technologies

• REST API RESTful web services are a key technology within NLAE. REST APIs allow for complex
requests to be made simple using a uniform middleware, internet protocols and web resources. We use
REST APIs to expose the primary functions of NLAE via endpoints which then allow for easy developer
access across a network. REST APIs have become considerably standardised and as such we developed
a REST API to interact with NLAE for NLP functionality.

• Docker Docker is a deployment technology which separates an application from the hardware setup on
which it operates. We choose Docker as it was important for NLAE to function in production environ-
ments that may not be familiar or a priori known. Docker packages NLAE within a container which
then grants autonomy from system-specific issues that may arise under production or development. Ad-
ditionally, containerization means that multiple instances of services can be run at the same time, even
on virtual machines.

• Kubernetes Kubernetes is an open-source deployment platform for managing containerized services
and helps in orchestrating applications automatically. Kubernetes is particularly helpful in managing a
cluster, grouping and scaling containerized services. Apache Flink provides official Docker images on
Docker Hub 10 which can be used to deploy a Session or Job cluster in a containerized environment
such as Kubernetes. To deploy a Flink cluster on Kubernetes, Flink provides a set of (common resource
definitions) 11 to launch the common cluster components using the kubectl command.

• Open API Open API is an API specification format for REST APIs. It allows NLAE to specify its
endpoints, define input/output operation parameters, specify authentication rules and outline licensing
information.

• Asynchronous Communication NLAE utilises asynchronous network interactions to avoid the draw-
back from synchronous blocking. All indexing and search requests to Elasticsearch are made using
the Asynchronous REST client. In this way, NLAE can expose resources to allow more non-blocking
requests to be made concurrently, decreasing the overhead on individual services.

6.3 Description of Components

This section describes the components of the Natural Language Analytics Engine (NLAE) and explains how
these components interact with each other to store data, assign processing jobs and return results to TYPHON.
As seen in Figure 21, the NLAE consists of three main components with an external REST API that ser-
vices TYPHON requests. To this effect the NLAE is seen as a black box for the remaining of the TYPHON
ecosystem, with the REST API exposing endpoints that are consumed by TYPHON.

6.3.1 External Facing NLAE REST API

The externally facing NLAE REST API provides endpoints that are consumed by TYPHON to send data,
request job processing and retrieve data from the NLAE. The NLAE REST API exposes the following three
endpoints:

• processText
• queryTextAnalytics
• deleteDocument

10https://hub.docker.com/_/flink
11https://ci.apache.org/projects/flink/flink-docs-stable/ops/deployment/kubernetes.html#common-cluster-resource-

definitions

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 25

D5.6 Text Processing Pipelines (Final Version)

6.3.1.1 processText The processText endpoint receives POST requests containing individual entities
from TYPHON to prepare them for text processing. An entity is a TyphonQL object that consists of:

• entityType: can be any object such as a person, a product or a review
• fieldName: the column name from the Typhon polystore where the object is saved
• id: the unique identifier allocated to the data object in the polystore
• text: the textual data that needs to be analyzed
• nlpFeatures: the NLP task(s), such as Sentiment Analysis or Name Entity Recognition, that need to be

performed on the textual data.
• workflowName: the name of the specific workflow that will be run to generate the processed result

The endpoint receives the request as a JSON object with the following model specification:

{
"entityType": "type : String",
"fieldName": "type : String",
"id": "type : String",
"text": "type : String",
"nlpFeatures": "type : [String]",
"workflowName": "type : [String]"

}

When a request is received, the process method performs validation checks on the JSON object to ensure that
the required properties are provided and supported by the TYPHON TypeSystem. Once the request passes all
the checks, it is forwarded to the Messaging Queue (MQ) Producer to be staged in the Indexing Queue.

6.3.1.2 queryTextAnalytics The queryTextAnalytics endpoint receives POST requests containing an
entityType, a fieldName and an nlpExpression to retrieve processed entities from the ElasticSearch engine. The
entityType and fieldName are the object attributes specified in the TyphonOL model, whereas the nlpExpression
contains an SQL WHERE clause in a string format such as "WHERE sentiment = ’positive’". The entityType,
the fieldName and the nlpExpression are used to build an ElasticSearch SearchRequest Query that returns
SearchHits, if corresponding matches are found in the ElasticSearch index. If there are not any results found, a
message "No results for the requested resource have been processed" is returned. The query.getResult() method
breaks down the nlpExpression to get fields of interest in the Elasticsearch index. To retrieve the documents an
Elasticsearch Java Search API query is constructed as follows:

BoolQueryBuilder boolQuery = new BoolQueryBuilder();
boolQuery.must(new MatchQueryBuilder("entityType", query.getEntityType()));
boolQuery.must(new MatchQueryBuilder("fieldName", query.getFieldName()));
boolQuery.must(new MatchQueryBuilder("result", query.getResult()));

// Search Source
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(boolQuery);

// Search Request
SearchRequest searchRequest = new SearchRequest("typhon_jobs");
searchRequest.source(searchSourceBuilder);
SearchResponse response = null;

try {

Page 26 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

response = client.search(searchRequest);
} catch (IOException e) {

e.printStackTrace();
}

SearchHits hits = response.getHits();
for (SearchHit x : hits) {

\\ Handle hits
}

In the case that the search does not return any results, it is assumed that the entityType in question has not
yet been processed, and a corresponding message is returned. A request to the queryTextAnalytics endpoint
contains a JSON object with the following model specifications:

{
"entityType": "type : String",
"fieldName": "type : String",
"nlpExpression": "type : NlpExpression"

}

6.3.1.3 deleteDocument The deleteDocument endpoint receives POST requests containing a specific id
for an individual document. This id is used to delete the document from the ElasticSearch engine. The Delete
method uses the prepareDelete method of the Delete API provided by ElasticSearch Java API. The prepare-
Delete method deletes a JSON document from an Elasticsearch index with the specific id value provided. For
example, the following Java code deletes the JSON document from an index called typhon_jobs, under a type
called _job, with id valued 1:

DeleteResponse response =
client.prepareDelete("typhon_jobs", "_job", "1").get();

The JSON object for the delete request has the following model specifications:

{
"id": "type : String"

}

6.3.2 Internal Components

Internally, the Natural Language Analysis Engine (NLAE) consists of a number of components that inter-
act with each other to schedule/run jobs and provide processing results. Figure 22 shows the major internal
components of the NLAE which are further discussed in the following sub-sections.

6.3.2.1 Job Manager The job manager is implemented using a Messaging Queue, with queues for Stag-
ing data to be indexed and Scheduling jobs to be run once data ingestion has completed. The Job Manager
creates an Exchange, which is a message routing agent. The exchange is responsible for routing the messages
to different queues with the help of bindings and routing keys. Exchanges ensure integrity by ensuring mes-
sages are delivered to only the queues they are bound to. Once the exchange and queues are set up, the Job
Manager initiates the Consumers for each queue. The REST API acts as a Producer and sends messages to

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 27

D5.6 Text Processing Pipelines (Final Version)

Figure 22: NLAE Internal Components

the Exchange, which routes them to the corresponding queues. Consumers act as background services which
listen for messages on their respective queues and handle the payload when a message is received.

6.3.2.2 Staging Manager The Staging Manager is a Consumer bound to the Staging Queue. When this
Consumer is initiated, it establishes a connection to the ElasticSearch engine using a High Level REST Client
(HLRC). As messages (documents) arrive in the Staging Queue, the Consumer sends asynchronous requests
to the HLRC to index the documents in the ElasticSearch index. Once all messages in the Staging Queue have
been consumed, the Consumer initiates a Job Scheduling request and publishes a message to the Jobs Queue.
In doing so, the Consumer also acts as a Producer.

6.3.2.3 Job Executor The Job Executor is a Consumer bound to the Jobs Queue. As soon as a message
arrives in the queue, the Job Executor consumes it, locates the corresponding resources and sends an HTTP
request to the Flink Monitoring API to submit a job to the Flink framework.

6.3.2.4 Flink Monitoring API Apache Flink provides a Monitoring REST API which can be used to
upload jars, submit jobs, query the status of jobs and collect statistics about jobs that are running or have
been completed. The Flink Monitoring API is a RESTful API that accepts HTTP requests and returns JSON
responses.

6.4 Deployment and Scalability

To simplify and automate the deployment of the Natural Language Analysis Engine (NLAE), it is envisioned
to be deployed as a Dockerised container. Docker 12 containers are an effective way of packaging software
in a way that is predictable and consistent. Containers allow code to be packaged along with its dependen-
cies so that applications can be deployed consistently and effectively on any physical or virtual host capable
of running Docker. Since the internal components of the NLAE are loosely coupled, they can be deployed as
separate containers which allows for separation of concerns between components, such as the ElasticSearch

12https://www.docker.com/

Page 28 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

engine and the Distributed Text Processing Framework. Docker Containers allow applications to scale, how-
ever managing such operations at scale becomes complicated. Operating at scale requires inter-container as
well as intra-container coordination. To manage these operations, Kubernetes13 is used as the orchestration
engine. Kubernetes provides tools and functionalities for automating deployment, scaling and management of
containerised applications.

13kubernetes.io

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 29

D5.6 Text Processing Pipelines (Final Version)

7 Risks and Limitations

The experiments and results were impacted by the disruptions caused by COVID-19 lockdown. The lockdown
posed multiple communication and development challenges as it disrupted the normal flow of the project time-
lines. Due to the closure of the Department of Computer Science and the university in general, it was not
possible to access the physical cluster and hence the horizontal scaling was not possible beyond the initial 2-
node cluster. It’s our understanding that experimentation with a bigger pool of slave nodes would definitely
yield more insights into the pros and cons of the different Distributed Text Processing Frameworks we evalu-
ated.

Another limitation associated with our evaluation is that the relatively small size of each individual data object,
since each data object consisted of a review or a short text span. This played an important role specially in
the low performance of UIMA DUCC which is built to breakdown large computations into smaller units to be
distributed across the cluster.

We used ElasticSearch version 6.8.1 for the evaluation of DTPFs and the development of the NLAE. Some of
the functionality in the corresponding Java API has since been deprecated and might be completely removed
in the future versions.

Finally, with respect to UIMA DUCC, we feel that one of the biggest limitations was the lack of supporting
material available online and a somewhat cryptic documentation. This caused a steep learning curve and may
have affected the evaluations adversely.

Page 30 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

8 Typhon Requirements

In this section, we review the technology requirements and use case requirements of deliverable D1.1 that
are related to text processing. Tables 7 and 8 present our progress towards each technology and use case
requirement, respectively. Requirements that are to be completed are marked with the task number and the
time frame in which they will be addressed. We have edited them from the previous deliverable D5.4 according
to our progress.

Table 7: Consolidated Technology Requirements

Number Requirement Priority Status
WORKPACKAGE 2: HYBRID POLYSTORE DESIGN

D1 TyphonML shall enable the specification of data entities and re-
lationships that will be stored in TyphonML

Shall Done

D4 Definition of custom data types to be used in TyphonML data
models shall be supported.

Shall Done

D5 Specification of data types that are needed for applying text-
specific analysis (e.g. text, video, recordings) shall be supported.

Shall Done

D6 The definition of structured data types (e.g. sentences, facts, en-
tities, events) that can be extracted from text and represented in
TyphonML shall be supported.

Shall Done

WORKPACKAGE 4: HYBRID POLYSTORE QUERYING
D33 The TyphonQL engine shall support normalization of natural lan-

guage fragments to enable "querying modulo spelling".
Shall Done

D36 TyphonQL shall support querying textual data. Shall Done
WORKPACKAGE 5: HYBRID POLYSTORE ANALYTICS AND MONITORING

D50 The development of text mining pipelines for data events shall be
simplified.

Shall Done

WORK PACKAGE 7: PLATFORM INTEGRATION AND EVALUATION
D76 Each of the Typhon components shall adhere to the specified TY-

PHON architectural guidelines
Shall Done

D77 Each of the Typhon components shall use Git for source code
control

Shall Done

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 31

D5.6 Text Processing Pipelines (Final Version)

Table 8: Use-case requirements

Number Requirement Priority Status
TEXT DATA MODELLING

27 The text data storage shall be able to parse its data to a relational
database

Shall Done

28 The text data storage shall be able to parse its data to an array
database

Shall Done

29 Text data modelling for XML files shall be provided Shall Done
POLYSTORE QUERY LANGUAGE

47 The polystore query language should expose the same semantic
data types and operations of the underlying database technologies
as defined in their schemas or metamodels

Should Done

52 The query language shall be able to interpret and execute text
search queries

Shall Done

QUERIES ON STRUCTURED DATA
58 The system shall be able to process queries on relational

databases
Shall Done

61 The system shall be able to process queries on text stores Shall Done
QUERIES ON TEXTUAL DATA

63 The polystore query language should expose a relevant subset of
the data types and operations of at least one of the following: Solr,
Lucene

Should Partially done

64 In the text data queries it shall be possible to search for one or
more different keywords in one query

Shall Done

65 Text data queries using patterns or full text search shall be sup-
ported

Shall Done

66 The text data queries may be able to autocorrect words May To be done
67 The text data queries may be able to recognise incorrect spellings

and mark them
May To be done

68 The text data queries may be able to recognise different spellings
for one word (AE/BE)

May To be done

69 The text data queries shall be able to recognise the Greek lan-
guage

Shall Done

Page 32 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

9 Conclusion

This deliverable presented our progress with task 5.6, where we tested the performance of Natural Language
Processing (NLP) pipelines within distributed environments to highlight design decisions for the development
of the Natural Language Analysis Engine for TYPHON.
We designed and developed a number of text processing pipelines, and measured their execution using three
frameworks. We investigated parallel and distributed data processing frameworks that can be used to scale
out the performance of NLP functionality within distributed settings. We outlined our experimental findings
and discussed factors such as compatibility and granularity of NLP toolkits, which impact performance when
used in a distributed fashion. Our results also examined the potential for data and task parallelism and argues
for a combination of both to maximise performance gains for NLP pipelines. Finally, based on our findings,
we provided a detailed description of the design and development of the Natural Language Analysis Engine
(NLAE) that integrates into the TYPHON ecosystem to provide text processing capabilities. We provided
details about the external and internal components of the NLAE and how they interact with each other to
perform NLP tasks supported by TYPHON.
Future work involves the extension of experiments to a wider range of NLP pipelines.We also aim to expand
the size of our cluster and also integrate different data sources within our experiments for testing. Additional
experiments can help uncover further NLP pipeline benchmarks and integrate these pipelines within NLAE.

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 33

D5.6 Text Processing Pipelines (Final Version)

References

[1] Elizabeth D Liddy. Natural language processing. 2001.

[2] Rodrigo Agerri, Xabier Artola, Zuhaitz Beloki, German Rigau, and Aitor Soroa. Big data for natural
language processing: A streaming approach. Knowledge-Based Systems, 79:36–42, 2015.

[3] Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, and María S Pérez-Hernández. Spark ver-
sus flink: Understanding performance in big data analytics frameworks. In 2016 IEEE International
Conference on Cluster Computing (CLUSTER), pages 433–442. IEEE, 2016.

[4] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri Heiskanen, and Volker
Markl. Benchmarking distributed stream data processing systems. arXiv preprint arXiv:1802.08496,
2018.

[5] James R Challenger, Jaroslaw Cwiklik, Louis R Degenaro, Edward A Epstein, and Burn L Lewis. Dis-
tributed uima cluster computing (ducc) facility, July 19 2016. US Patent 9,396,031.

[6] Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion trends with
one-class collaborative filtering. In proceedings of the 25th international conference on world wide web,
pages 507–517, 2016.

[7] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003 shared task: Language-
independent named entity recognition. In Walter Daelemans and Miles Osborne, editors, Proceedings of
CoNLL-2003, pages 142–147. Edmonton, Canada, 2003.

[8] Marti Hearst. What is text mining. SIMS, UC Berkeley, 5, 2003.

[9] Gregory Grefenstette. Tokenization. In Syntactic Wordclass Tagging, pages 117–133. Springer, 1999.

[10] Katrin Tomanek, Joachim Wermter, and Udo Hahn. Sentence and token splitting based on conditional
random fields. In Proceedings of the 10th Conference of the Pacific Association for Computational
Linguistics, volume 49, page 57, 2007.

[11] Christian Buck, Kenneth Heafield, and Bas Van Ooyen. N-gram counts and language models from the
common crawl. In LREC, volume 2, page 4. Citeseer, 2014.

[12] Jay Nanavati and Yogesh Ghodasara. A comparative study of stanford nlp and apache open nlp in the
view of pos tagging. Int. J Soft Comput. Eng., 5(5):57–60, 2015.

[13] Abdul Ghaffar Shoro and Tariq Rahim Soomro. Big data analysis: Apache spark perspective. Global
Journal of Computer Science and Technology, 2015.

[14] Salman Salloum, Ruslan Dautov, Xiaojun Chen, Patrick Xiaogang Peng, and Joshua Zhexue Huang. Big
data analytics on apache spark. International Journal of Data Science and Analytics, 1(3-4):145–164,
2016.

[15] Diego García-Gil, Sergio Ramírez-Gallego, Salvador García, and Francisco Herrera. A comparison on
scalability for batch big data processing on apache spark and apache flink. Big Data Analytics, 2(1):1,
2017.

Page 34 Version 1.0
Confidentiality: Public Distribution

8 July 2020

D5.6 Text Processing Pipelines (Final Version)

[16] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas Tzoumas. State
management in apache flink®: consistent stateful distributed stream processing. Proceedings of the
VLDB Endowment, 10(12):1718–1729, 2017.

[17] Mark Van Rijmenam, Tatiana Erekhinskaya, Jochen Schweitzer, and Mary-Anne Williams. Avoid being
the turkey: How big data analytics changes the game of strategy in times of ambiguity and uncertainty.
Long Range Planning, 52(5):101841, 2019.

8 July 2020 Version 1.0
Confidentiality: Public Distribution

Page 35

	Introduction
	Overview
	Intentions
	Outcomes

	Background and Literature Review
	Text Mining & Text Processing
	Natural Language Processing Tasks
	Natural Language Processing Toolkits

	Processing Pipelines
	Parallel and Distributed Processing Frameworks
	Apache UIMA DUCC
	Apache Spark
	Apache Flink

	Natural Language Processing in Typhon

	Methodology
	Datasets
	Amazon Product Reviews Dataset
	CoNLL-2003 - Named Entity Recognition Dataset
	Custom Weather Named Entity Recognition Dataset

	Use case Scenarios
	Experimental Use Cases
	Partners Use Cases

	Experimental Settings
	Experimental Setup
	Cluster Configuration
	Data Pre-processing
	NLP Toolkit

	Evaluation Settings
	Controlled Permutations

	Results
	Experiment Evaluation
	Speed
	Data Size
	Throughput

	Distributed Text Processing Framework Design Evaluation

	Evaluation
	Discussion
	Importance of Serialisability in Distributed Frameworks
	Data and Task Parallelism

	Natural Language Analysis Engine
	Overview
	Development Technologies
	Libraries
	Technologies

	Description of Components
	External Facing NLAE REST API
	processText
	queryTextAnalytics
	deleteDocument

	Internal Components
	Job Manager
	Staging Manager
	Job Executor
	Flink Monitoring API

	Deployment and Scalability

	Risks and Limitations
	Typhon Requirements
	Conclusion

