
Project Number 780251

D3.3 TyphonML to TyphonDL Model Transformation Tools

Version 1.0
23 December 2019

Final

Public Distribution

University of L’Aquila

Project Partners: Alpha Bank, ATB, Centrum Wiskunde & Informatica, CLMS, Edge Hill University,
GMV, OTE, SWAT.Engineering, The Open Group, University of L′Aquila,
University of Namur, University of York, Volkswagen

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
TYPHON Project Partners accept no liability for any error or omission in the same.

© 2019 Copyright in this document remains vested in the TYPHON Project Partners.

D3.3 TyphonML to TyphonDL Model Transformation Tools

Project Partner Contact Information

Alpha Bank ATB
Vasilis Kapordelis Sebastian Scholze
40 Stadiou Street Wiener Strasse 1
102 52 Athens 28359 Bremen
Greece Germany
Tel: +30 210 517 5974 Tel: +49 421 22092 0
E-mail: vasileios.kapordelis@alpha.gr E-mail: scholze@atb-bremen.de
Centrum Wiskunde & Informatica CLMS
Tijs van der Storm Antonis Mygiakis
Science Park 123 Mavrommataion 39
1098 XG Amsterdam 104 34 Athens
Netherlands Greece
Tel: +31 20 592 9333 Tel: +30 210 619 9058
E-mail: storm@cwi.nl E-mail: a.mygiakis@clmsuk.com
Edge Hill University GMV Aerospace and Defence
Yannis Korkontzelos Almudena Sánchez González
St Helens Road Calle Isaac Newton 11
Ormskirk L39 4QP 28760 Tres Cantos
United Kingdom Spain
Tel: +44 1695 654393 Tel: +34 91 807 2100
E-mail: yannis.korkontzelos@edgehill.ac.uk E-mail: asanchez@gmv.com
OTE SWAT.Engineering
Theodoros E. Mavroeidakos Davy Landman
99 Kifissias Avenue Science Park 123
151 24 Athens 1098 XG Amsterdam
Greece Netherlands
Tel: +30 697 814 7618 Tel: +31 633754110
E-mail: tmavroeid@ote.gr E-mail: davy.landman@swat.engineering
The Open Group University of L′Aquila
Scott Hansen Davide Di Ruscio
Rond Point Schuman 6, 5th Floor Piazza Vincenzo Rivera 1
1040 Brussels 67100 L’Aquila
Belgium Italy
Tel: +32 2 675 1136 Tel: +39 0862 433735
E-mail: s.hansen@opengroup.org E-mail: davide.diruscio@univaq.it
University of Namur University of York
Anthony Cleve Dimitris Kolovos
Rue de Bruxelles 61 Deramore Lane
5000 Namur York YO10 5GH
Belgium United Kingdom
Tel: +32 8 172 4963 Tel: +44 1904 325167
E-mail: anthony.cleve@unamur.be E-mail: dimitris.kolovos@york.ac.uk
Volkswagen
Behrang Monajemi
Berliner Ring 2
38440 Wolfsburg
Germany
Tel: +49 5361 9-994313
E-mail: behrang.monajemi@volkswagen.de

Page ii Version 1.0
Confidentiality: Public Distribution

23 December 2019

D3.3 TyphonML to TyphonDL Model Transformation Tools

Document Control
Version Status Date

0.1 Document outline 28 November 2019
0.2 First draft 7 December 2019
0.7 First full draft 16 December 2019
0.8 Further editing draft 18 December 2019
1.0 Final updates after partner reviews 23 December 2019

23 December 2019 Version 1.0
Confidentiality: Public Distribution

Page iii

D3.3 TyphonML to TyphonDL Model Transformation Tools

Table of Contents

1 Introduction 1

1.1 Structure of the deliverable . 1

2 Explicit management of functional and non-functional requirements in TyphonML models 2

2.1 Overview of functional and non-functional data requirements 5

2.1.1 Functional Requirements . 5

2.1.2 Non-functional Requirements . 6

2.2 Specification of data requirements and their feasibility checks 7

2.3 Generation of TyphonML data mappings . 12

3 The TyphonML to TyphonDL transformation 15

4 Conclusions 18

Page iv Version 1.0
Confidentiality: Public Distribution

23 December 2019

D3.3 TyphonML to TyphonDL Model Transformation Tools

Executive Summary

This document presents the techniques and tools that have been developed in collaboration with WP2 to support
the specification of TyphonML models in a consistent way with the requirements that the developer wants to
achieve with the system being modeled. An enhancement of the TyphonML language and supporting tools has
been needed to enable the generation of TyphonDL-based deployment configurations, which are able to satisfy
functional and non-functional requirements defined at the TyphonML level.

23 December 2019 Version 1.0
Confidentiality: Public Distribution

Page v

D3.3 TyphonML to TyphonDL Model Transformation Tools

1 Introduction

Designing and deploying hybrid data persistence architectures that involve combination of relational and
NoSQL databases is a complex, and error-prone task. TyphonML (being defined and developed in WP2)
provides developers with a domain specific language enabling the specification of the conceptual entities that
need to be managed by the application being developed. Moreover, such entities are subsequently mapped to
the different kinds of available DB systems.

In the context of TYPHON, WP3 is focusing on polystore deployment aspects by designing and developing
the TyphonDL language, which provides concepts that lie at an abstraction level between that of TyphonML,
and that of specific data stores and virtual machine configuration technologies. Model-to-text transformations
that consume TyphonDL models and produce installation and configuration scripts targeting the selected vir-
tual machine image assembly technologies (e.g. Chef, Docker) are also in the scope of WP3. In this document,
we focus on the developed approach and supporting tools for managing the guided specification of TyphonML
models and the corresponding automated generation of TyphonDL specifications. In particular, in this docu-
ment we present results of WP2 and WP3 related to the following task (from the TYPHON DoW):

Task 3.3: Transformation of TyphonML Design Models to Deployment (TyphonDL) Models. This
task will produce automated transformations for mapping polystore design (TyphonML) models
to deployment (TyphonDL) models, which will specify the way to assemble virtual machines (or
instances) that contain all the software components needed to support a polystore (e.g. operating
system, system services, configured persistence back-ends). The transformations between Ty-
phonML and the TyphonDL models will be developed using contemporary model transformation
languages like ATL [4] and ETL [6].

Thus, this document presents the tools that have been developed in collaboration with WP2 to support the spec-
ification of TyphonML models in a consistent way with the requirements that the developer wants to achieve.
Such TyphonML models are subsequently consumed to generate TyphonDL specifications so to eventually ob-
tain deployment configurations, which are able to satisfy functional and non-functional requirements defined
at the TyphonML level.

1.1 Structure of the deliverable

The structure of the deliverable is as follows: the functional and non-functional requirements that modelers
can specify at the level of conceptual entities are overviewed in Section 2 together with the conceived tools
that are defined in the context of WP2 to enhance TyphonML accordingly. Section 3 describes the model trans-
formation tools, which are able to generate TyphonDL specifications from source TyphonML ones. Section 4
concludes the document and provides an overview of the next steps.

23 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 1

D3.3 TyphonML to TyphonDL Model Transformation Tools

2 Explicit management of functional and non-functional re-
quirements in TyphonML models

As described in deliverable D2.4, the TyphonML language and supporting tools permit modelers to specify
both the conceptual entities of the application being developed and how they have to be mapped on the avail-
able DB infrastructures. Thus, depending on the wanted functional and non-functional properties, modelers
have the responsibility of properly considering the appropriate technologies. For instance, Listing 1 shows an
explanatory TyphonML model specifying a simple e-commerce system. Different database systems have been
considered for storing the modeled conceptual entities. For instance, products, orders, and credit cards, are
modeled so to be mapped on a relational database since it permits to store data by protecting them by strong
ACID transactions. Such a strong requirement is not required e.g., to manage reviews and comments, which
are consequently persisted as nested documents in a document database. Data about products that customers
tend to buy together are stored in a graph database.

As previously mentioned, modelers have to pay particular attention when mapping the modeled conceptual
entities to concrete databases. By still referring to the explanatory e-commerce example, if modelers wrongly
map the Order entity e.g., to a document database, the ACID transaction requirement that was expected to
be satisfied for that conceptual entity would not be met. In other words, the numerous existing database
technologies can impede the well-informed selection of the data store, which is the most appropriate with
respect to the wanted functional and non-functional requirements that modelers would like to address for the
system being modeled.

1 -- Conceptual entities

2 entity Review{

3 product -> Product[1]

4 }

5

6 entity Product{

7 name : String

8 description : String

9 review :-> Review."Review.product"[0..*]

10 orders -> Order[0..*]

11 photo : Jpeg;

12 }

13

14 entity Order{

15 date : Date

16 totalAmount : Int

17 products -> Product."Product.orders"[0..*]

18 users -> User."User.orders"[1]

19 paidWith -> CreditCard[1]

20 }

21

22 entity User{

23 name : String

24 surname : String

25 comments :-> Comment[0..*]

26 paymentsDetails :-> CreditCard[0..*]

27 orders -> Order[0..*]

28 }

29

Page 2 Version 1.0
Confidentiality: Public Distribution

23 December 2019

D3.3 TyphonML to TyphonDL Model Transformation Tools

30 entity Comment{

31 freetext content [SentenceSegmentation,TextClassification]

32

33 responses :-> Comment[0..*]

34 }

35

36 entity CreditCard{

37 number : String

38 expiryDate : Date

39 }

40

41 -- Specification of data mappings

42 relationaldb RelationalDatabase{

43 tables{

44 table {

45 OrderDB : Order

46 index orderIndex {

47 attributes ("Order.date")

48 }

49 }

50 table {

51 UserDB : User

52 index userIndex{

53 attributes ("User.name")

54 }

55 }

56 table {

57 ProductDB : Product

58 index productIndex{

59 attributes ("Product.name")

60 }

61 }

62 table {

63 CreditCardDB : CreditCard

64 index creditCardIndex{

65 attributes ("CreditCard.number")

66 }

67 }

68 }

69 }

70 }

71

72 documentdb ReviewCommentDB{

73 collections{

74 ReviewsCol : Review

75 CommentsCol : Comment

76 }

77 }

78

79 graphdb ConcordanceDB {

80 nodes {

81 node ProductNode!Product {

82 name = "Product.name"

23 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 3

D3.3 TyphonML to TyphonDL Model Transformation Tools

83 }

84 }

85 edges {

86 edge concordance {

87 from ProductNode

88 to ProductNode

89 labels {

90 weight:int

91 }

92 }

93 }

94 }

Listing 1: Sample TyphonML specification

To mitigate the difficulties of properly mapping conceptual data entities to the most appropriate database sys-
tems, a novel tool supported approach has been conceived as shown in Fig. 1. In particular, the TyphonML
language has been enhanced in order to permit modelers to annotate conceptual entities with functional and
non-functional requirements. Thus, the tagged conceptual entities (referred with TyphonMLCE hereafter) are
given as input to the Feasibility Checks tool, which performs statical analysis on the given input in order to
check if the given requirements can be met with respect to the available database technologies. In case multi-
ple solutions are possible, modelers is asked to select one of those. It can happen that the given requirements
are too strict and cannot be met as they are. Thus, in such cases, modelers are asked to relax some of the given
requirements (if possible). After such a phase, the Mapping Generator tool is used to generate a complete Ty-
phonML specification, which includes the mappings that best fit the given requirements (see TyphonMLDBMap

block in Fig. 1). The generated complete TyphonML specification is in turn given as input to the TyphonDL
Generator tool, which generates the deployment specification w.r.t. the given functional and non-functional
requirements.

The remaining part of the section is organized as follows: Sec. 2.1 makes an overview of functional and non-
functional requirements that make sense in the context of data modeling and data management. Section 2.2
introduces the enhancements that have been operated to the TyphonML language and tools for enabling the
specification of data requirements and their feasibility checks. In case of multiple or empty solutions, human
interventions are needed to subsequently generate the TyphonML data mappings as described in Sec. 2.3. The
generation of TyphonDL specifications out of input TyphonML models is described in the next section.

Figure 1: Overview of the conceived data mapping generation

Page 4 Version 1.0
Confidentiality: Public Distribution

23 December 2019

D3.3 TyphonML to TyphonDL Model Transformation Tools

2.1 Overview of functional and non-functional data requirements

As described in [3] relational database systems have reached an unmatched level of reliability, scalability,
and support through decades of development. However, in some application areas (e.g., social networks and
IoT systems) data have reached a vast amount so that they cannot be stored in traditional database solutions.
Horizontal scalability and high availability are just examples of requirements that are satisfied by NoSQL
databases at the price of sacrificing query capability and consistency guarantees of relational databases. Thus,
when developing data-intensive applications, it is necessary to bare clearly in mind how data will be stored,
consumed, and consequently the functional and non-functional requirements that need to be met.

According to [3] it is possible to classify database systems with respect to at least the functional and non-
functional requirements described below.

2.1.1 Functional Requirements

The main functional requirements that can be used to describe a DBMS are overviewed below.

Scan queries: The DBMS implements plans to execute queries efficiently. To this end, the query to be executed
is processed so to identify the steps that the DBMS has to perform for executing the query.

ACID transactions: The operations that are managed by the considered DBMS will have the following prop-
erties

• Atomic: the operation will either work or not work (not half-work);
• Consistent: by applying the same operation over and over again given the same starting state, the result

would be always the same;
• Isolated: the operation will not be impacted by events that are not related to it;
• Durable: the result of the performed opearation will remain unless the resulting data is modified by

another ACID transaction.

Conditional Writes: This is a relevant requirement that needs to be satisfied for instance in case of bank-
ing applications where over-counting or under-counting are not admitted. Conditional writes ensure that no
other requests interfere with the operation being operated. In other words, conditional writes are a form of
lightweight transactions.

Joins: The DBMS is able to fetch data from two or more entities and combine them to appear as a single set
of data. Values that are common to the considered entities are used to combine stored data accordingly.

Sorting: The DBMS implements techniques able to sort items in ascending or descending order.

Full-text search: The DBMS implements searching and indexing mechanisms able to retrieve stored texts
matching the words in the given search query.

Aggregation and analytics: The DBMS permits to aggregate data coming from structured or semi-structured
sources into additional columns for making them easier to query and to analyse.

23 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 5

D3.3 TyphonML to TyphonDL Model Transformation Tools

Functional Requirements

Scan Queries ACID
Conditional

Writes Joins Sorting
Full-text
Search Analytics

MongoDB 3 3 3 3 3

Redis 3 3 3

HBase 3 3 3 3

Riak 3

Cassandra 3 3 3 3

MySQL 3 3 3 3 3 3 3

Table 1: Comparison of MongoDB, Redis, HBase, Riak, Cassandra and MySQL with respect to
functional requirements [3]

In [3] authors analysed different DBMSs (i.e., MongoDB1, Redis2, HBase3, Riak4, Cassandra5, and MySQL6)
and classified them with respect to the functional requirements previously overviewed. Table 1 shows the result
of such an analysis by showing the functional requirements that are supported by the considered technologies.

2.1.2 Non-functional Requirements

Concerning non-functional requirements, according to [3] DBMSs can be classified with respect to the ones
described below.

Data Scalability: It refers to the cabability of the considered DBMS to scale up or down depending on the
amount of the data it has to manage without sacrificing performance.

Write Scalability: It refers to the capability of the considered DBMS to manage write-intensive workloads
without sacrificing performance. An example of technique that is employed to support write scalability is
sharding (partitioning) data across different nodes (shards) in the system. A simpler approach, even though not
always enough, is adding more CPU and RAM to some levels of the considered system.

Read Scalability: Similarly to write scalability, it refers to the capability of DBMSs to manage read-intensive
workloads without sacrificing performance. The adoption and management of data replicas is a possible way
to achieve read scalability.

Elasticity: It is related to scalability and according to [1] it is “the ability to deal with load variations by adding
more resources during high load or consolidating the tenants to fewer nodes when the load decreases, all in a
live system without service disruption”.

Consistency: The considered DBMS implements techniques that permit to maintain data in a predictable, and
consistently safe, state.

Write Latency: The system provides the means to reduce the overall write latency, thereby improving runtime
performance. The adoption of replicas is a way to reduce write latency.

1https://www.mongodb.com/
2https://redis.io/
3https://hbase.apache.org/
4https://riak.com/
5http://cassandra.apache.org/
6https://www.mysql.com/

Page 6 Version 1.0
Confidentiality: Public Distribution

23 December 2019

https://www.mongodb.com/
https://redis.io/
https://hbase.apache.org/
https://riak.com/
http://cassandra.apache.org/
https://www.mysql.com/

D3.3 TyphonML to TyphonDL Model Transformation Tools

Non-Functional Requirements
Data

Scalability
Write

Scalability
Read

Scalability Elasticity Consistency
Write

Latency
Read

Latency
Write

Throughput
Read

Availability
Write

Availability Durability

MongoDB 3 3 3 3 3 3 3 3 3

Redis 3 3 3 3 3 3 3

HBase 3 3 3 3 3 3 3

Riak 3 3 3 3 3 3 3 3 3 3

Cassandra 3 3 3 3 3 3 3 3 3

MySQL 3 3 3

Table 2: Comparison of MongoDB, Redis, HBase, Riak, Cassandra and MySQL with respect to
non-functional requirements [3]

Read Latency: Similarly to write latency, the system provides the means to reduce the overall latency con-
cerning read operations, thereby improving runtime performance. The adoption of in-memory storage is an
example of technique that can be employed to reduce read latency.

Write Throughput: It refers to the overall capability of the considered DBMS to write data. It is possible to
increase write throughput e.g. by employing memory caches and append-only storage that tries to maximize
throughput by writing sequentially [3].

Read Availability: It is related to the availability of the system for read operations. Thus, it is the probability
that a read operation is successful in the given configuration. The adoption of replicas is a way to increase such
a probability.

Write Availability: Similarly to the read availability, it is the probability that a write operation is successful in
the given configuration.

Durability: It is referred to how strongly persistent the stored data is in the event of some kind of catastrophic
failure within the store. Examples of a catastrophic failure are power outages, disk crashes, physical memory
corruption, or even fatal application programming errors.7

Similarly to the functional requirement comparison shown in Table 1, in [3] authors analysed different DBMSs
and classified them with respect to the non functional requirements previously overviewed. The result of the
performed analysis is shown in Table 2.

2.2 Specification of data requirements and their feasibility checks

To enable the specification of data requirements, TyphonML has been enhanced with the support of dedicated
tags as shown in the e-commerce example in Listing 2. In the shown explanatory example, the developer has
specified that for the conceptual entity Review the functional requirement fulltextsearch should be supported
by the wanted mapping (see the tag @fr[fulltextsearch]). Non functional requirements have been also
specified for the same entity by means of the @nfr tag. In particular, the Review entity shall be managed by a
DBMS supporting readscalability and readavailability.

1 @fr[fulltextsearch]

2 @nfr[readscalability,readavailability]

3 entity Review {

4 id: String

5 content: String

7https://docs.oracle.com/en/database/other-databases/nosql-database/19.3/java-driver-kv/setting-

synchronization-based-durability-policies.html

23 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 7

https://docs.oracle.com/en/database/other-databases/nosql-database/19.3/java-driver-kv/setting-synchronization-based-durability-policies.html
https://docs.oracle.com/en/database/other-databases/nosql-database/19.3/java-driver-kv/setting-synchronization-based-durability-policies.html

D3.3 TyphonML to TyphonDL Model Transformation Tools

6 product -> Product[1]

7 }

8

9 entity Product {

10 id: String

11 name: String

12 description: String

13 orders -> OrderProduct[0..*]

14 review:-> Review."Review.product"[0..*]

15 }

16

17 @nfr[consistency]

18 entity OrderProduct {

19 id: String

20 date: Date

21 totalAmount: int

22 products -> Product.products[0..*]

23 users -> User."User.orders"[1]

24 paidWith -> CreditCard[1]

25 }

26

27 @fr[sorting]

28 @nfr[consistency]

29 entity User {

30 id: String

31 name: String

32 comments -> Comment[0..*]

33 products -> Product.products[0..*]

34 paymentsDetails :-> CreditCard[0..*]

35 orders -> OrderProduct[0..*]

36 }

37

38 @fr[fulltextsearch]

39 @nfr[readscalability, readavailability]

40 entity Comment {

41 id: String

42 content: String

43 responses :-> Comment[0..*]

44 }

45

46 @nfr[consistency]

47 entity CreditCard {

48 id: String

49 number: String

50 expiryDate: Date

51 }

Listing 2: Specification of tagged conceptual entities

The enhancements that have been operated to the TyphonML language can be exploited also by means of the
graphical editor as shown in Fig. 2

The functional and non-functional requirements that can be specified in a TyphonML model are defined in
a dedicated Requirement Definition model conforming to the metamodel shown in Fig. 3. Such a model is

Page 8 Version 1.0
Confidentiality: Public Distribution

23 December 2019

D3.3 TyphonML to TyphonDL Model Transformation Tools

Figure 2: TyphonML conceptual model with functional and non-functional tags

defined once for all and can be extended when the support for new database types is added. According to
Fig. 3, a requirement definition model consists of the specification of functional and non-functional require-
ments. Additionally, each supported database type is also specified by linking it to the supported requirements.
For instance, the requirement definition model shown in Fig. 4 encodes the analysis shown in Table 1 and Ta-
ble 2. For example, consistently with what has been presented in [3], MongoDB is able to support the sorting

Figure 3: The Requirement Definition metamodel

23 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 9

D3.3 TyphonML to TyphonDL Model Transformation Tools

Figure 4: An example of requirement definition model conforming to the metamodel in Fig. 3.

functional requirement, further than datascalability, readlatency, and durability among others. It is impor-
tant to remark that the requirement definition model is not fixed and can extended when the set of supported
database technologies change.

As previously mentioned, once the conceptual entities have been specified as given in the example shown in
Listing 2, a feasibility check is performed. In particular, for each modeled entity, TyphonML tools identify
the database types supporting all the specified functional and non-functional requirements. Such a feasibility
check is implemented by means of Epsilon Object Language (EOL)8 queries as shown in Listing 3. EOL
is an imperative programming language for creating, querying, and modifying EMF models. The primary
aim of that language is to provide a reusable set of common model management facilities, atop which task-
specific languages can be implemented. However, EOL can also be used as a general-purpose stand-alone
model management language for automating tasks that do not fall into the patterns targeted by task-specific
languages.

8https://www.eclipse.org/epsilon/doc/eol/

Page 10 Version 1.0
Confidentiality: Public Distribution

23 December 2019

https://www.eclipse.org/epsilon/doc/eol/

D3.3 TyphonML to TyphonDL Model Transformation Tools

The feasibilityCheck operation as defined in Listing 3 gets executed during the mapping generation phase,
which is detailed in the next section.

1 operation TyphonML!Entity feasabilityCheck(): List<Map>{

2 var mapRank = new List<Map>;

3

4 //For each DBType

5 for(dbType in TyphonMLReq!DBType.allInstances()){

6 var mapDBWithFNF = new Map<TyphonMLReq!DBType, mapFNFRequirements>;

7 var mapFNFRequirements = new Map<functionalList, nFunctionalList>;

8 var functionalList = new Map<Integer, List<String>>;

9 var nfunctionalList = new Map<Integer, List<String>>;

10 //Check Entity Functional Tags

11 for(fr in self.functionalTags){

12 var fCount = 0;

13 var functionalStringList = new List<String>;

14 for(fRname in dbType.frequirements){

15 if(fRname.name = fr.name){

16 functionalStringList.add(fr.name);

17 fCount++;

18 }

19 }

20 functionalList.put(fCount, functionalStringList);

21 }

22 //Check Entity Not Functional Tags

23 for(nfr in self.nfunctionalTags){

24 var nfCount = 0;

25 var nfunctionalStringList = new List<String>;

26 for(nfRname in dbType.nfrequirements){

27 if(nfRname.name = nfr.name){

28 nfunctionalStringList.add(nfr.name);

29 nfCount++;

30 }

31 }

32 nfunctionalList.put(nfCount, nfunctionalStringList);

33 }

34 //Suggest DBType only if there are some functional or non functional matches

35 if(not functionalList.isEmpty and not nfunctionalList.isEmpty){

36 mapFNFRequirements.put(functionalList, nfunctionalList);

37 mapDBWithFNF.put(dbType,mapFNFRequirements);

38 mapRank.add(mapDBWithFNF);

39 }

40 }

41

42 return mapRank;

43 }

Listing 3: EOL fragment of the feasibility checker

In case of many possible solutions, the modeler is provided with all of them so that the final selection can be
done. In case of no possible solutions, the modeler is still provided with the list of database types that are
ordered with respect to the number of covered requirements. By looking at such a list, modeler can decide
if some requirement can be relaxed and modify TyphonMLCE accordingly. For instance, concerning the
conceptual entity Review as specified in Listing 2 the feasibility check tool gives the following result as output:

23 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 11

D3.3 TyphonML to TyphonDL Model Transformation Tools

• MongoDB: 1 fr [fulltextsearch], 2 nfr [readscalability, readavailability]
• Riak: 1 fr [fulltextsearch], 2 nfr [readscalability, readavailability]
• Cassandra: 1 fr [fulltextsearch], 2 nfr [readscalability, readavailability]
• MySQL: 1 fr [fulltextsearch], 1 nfr [readscalability]
• Redis: 0 fr [], 2 nfr [readscalability, readavailability]
• HBase: 0 fr [], 0 nfr []

This means that it is possible to satisfy all the requirements given for the Review entity, by managing it with
MongoDB, Riak, or Cassandra. The usage of MySQL, Redis, or HBase to store Review data would not satisfy
all the functional and non-functional requirements that the modeler has specified for it.

2.3 Generation of TyphonML data mappings

Once a set of database systems has been identified to satisfy the requirements of all the modeled conceptual
entities, the corresponding mappings are generated. The TyphonML data mapping generation has been devel-
oped by relying on the Epsilon Object Language and on the Epsilon Validation Language (EVL)9 provided by
the Epsilon platform [5]. In particular, models are analysed by a set of checks each devoted to the discovery of
a potential mapping between a certain entity and a possible database.

EVL is a validation language built on top of EOL and provides a number of features such as support for detailed
user feedback, constraint dependency management, semi-automatic transactional inconsistency resolution and
(as it is based on EOL) access to multiple models of diverse metamodels and technologies. The aim of EVL
is to contribute model validation capabilities to Epsilon. More specifically, EVL can be used to specify and
evaluate constraints on models of arbitrary metamodels and modelling technologies. EVL also supports de-
pendencies between constraints (e.g., if constraint A fails, the constraint B cannot be evaluated), customizable
error messages to be displayed to the user and specification of fixes (in EOL) which users can invoke to repair
inconsistencies. Also, as EVL builds on EOL, it can evaluate inter-model constraints (unlike OCL). Finally,
the language permits to handle the severity of validation result:

• Constraints: they are used to capture critical errors that invalidate the model;
• Critiques: they are used to capture non-critical situations that do not invalidate the model, but should

nevertheless be addressed by the user to enhance the quality of the model.

To implement the Mapping Generation phase shown in Fig. 1, a set of EVL rules have been defined. They take
two models as input: the first one is a TyphonMLCE specification (i.e., conceptual entities enriched with func-
tional and non-functional tags); the second one is a requirement definition model containing all the databases
that can be managed by TyphonDL with also all the functional and non-functional requirements that each of
them is able to meet (see Fig. 4).

We exploit the potential of EVL to search all (and only) metaclasses of type Entity that have functional
and/or non-functional requirements specificed (see line 1-2 of Listing 4). For each retrieved entity the
generateDatabaseEntity critique is executed aiming at generating a corresponding data mapping. To this
end, the feasibilityCheck operation is executed (see line 11) to identify in the input requirement definition
model the database types that can be used.

1 context TyphonML!Entity {

2 guard: self.hasTags() //It gets only Entities with Requirements

9https://www.eclipse.org/epsilon/doc/evl/

Page 12 Version 1.0
Confidentiality: Public Distribution

23 December 2019

https://www.eclipse.org/epsilon/doc/evl/

D3.3 TyphonML to TyphonDL Model Transformation Tools

Figure 5: EVL selection entity generator based on entity tags

3 critique generateDatabaseForEntity{

4 check{

5 return self.feasabilityCheck().isEmpty();

6 }

7 message: "Generate Database for "+self.name

8 fix {

9 title: "Generate Database for "+self.name

10 do {

11 var selectedDatabase = System.user.choose("Select Best Match Database Type:

↪→ ", self.feasabilityCheck(), new List<String>);

12 self.generateDatabaseForEntity(selectedDatabase);

13 }

14 }

15 }

16 }

Listing 4: Fragment of the EOL-based TyphonML data mapping generator

As implemented in lines 34-39 of Listing 3, the feasibilityCheck operation returns as output the list of
databases that permits to satisfy all and only the requirements specified by the user. The returned list is ranked
with respect to the total number of requirements, which are satisfied by each single solution. At this point, the
user can select the best solution by means of a window dialog as shown in Figure 6.

Once the choice is made, another EOL function (line 12 in Listing 4) will take care of generating the corre-
sponding database mapping in the TyphonMDBMap model being produced and making the necessary associa-
tions with the reference entity.

23 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 13

D3.3 TyphonML to TyphonDL Model Transformation Tools

Figure 6: Database selection for the entity Comment with ranked solution based on satisfied func-
tional and non-functional requirements.

It can happen that there are entities that are not tagged or that there is no database that meets the requirements
defined by the user. In such cases, the user is warned that the entities to be mapped are missing, and conse-
quently, all the databases managed by TyphonDL are shown so that the user can manually specify the mapping
with a specific database.

Page 14 Version 1.0
Confidentiality: Public Distribution

23 December 2019

D3.3 TyphonML to TyphonDL Model Transformation Tools

3 The TyphonML to TyphonDL transformation

As presented in the deliverable D3.2 [2], the creation of TyphonDL models is supported by means of a wizard,
which takes as input a complete TyphonML model. On the first page of the wizard (see figure 7(a)) the name
for the TyphonDL model has to be entered and a deployment technology such as Docker10 or Kubernetes11

has to be chosen from a drop-down menu. The selected technology will be included in the model in the form
of containertype which is used when defining a container:

1 containertype Docker

2 container ContainerName : Docker ...

Listing 5: Defining a containertype

The input TyphonML model is parsed by the TyphonDL Wizard to identify the databases that needs to be
deployed by TyphonDL. For each database the second page of the wizard (see Fig. 7(b)) provides the possibility
to either use a pre-existing database configuration file or create a new database configuration from a template.

(a) Deplyment technology selection (b) DBMS selection

Figure 7: TyphonDL Creation Wizard

To create a new database configuration the user is asked to choose one of the supported DBMS for the specific
database types, e.g. MariaDB12 or MySQL for relational databases or MongoDB for document databases. In
Listing 6, a basic MongoDB configuration is generated from the database name taken from the TyphonML
model and a database configuration template included in the TyphonDL plugin (see also [2]). Per default the
latest image from Docker Hub13 with only the necessary variables is used.

1 dbtype mongo {

2 default image = mongo:latest ;

3 }

4 database ReviewDB : mongo {

10https://www.docker.com/
11https://kubernetes.io/
12https://mariadb.org/
13https://hub.docker.com/

23 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 15

https://www.docker.com/
https://kubernetes.io/
https://mariadb.org/
https://hub.docker.com/

D3.3 TyphonML to TyphonDL Model Transformation Tools

5 environment {

6 MONGO_INITDB_ROOT_USERNAME = admin ;

7 MONGO_INITDB_ROOT_PASSWORD = admin ;

8 }

9 }

10 ...

11 container reviews : Docker {

12 deploys ReviewDB

13 ports {

14 target = 27017 ;

15 published = 27018 ;

16 }

17 }

18 ...

Listing 6: Template for MongoDB

The creation of a TyphonDL model has been improved since the deliverable D3.2 [2] to consider also the
functional and non-functional requirements that are given as described in the previous sections. In particular,
two different improvements have been operated:

1. The list of possible target databases shown in the wizard is narrowed down by considering the output of
the feasibility check tool presented in the previous section. In particular, with the automated generation
of TyphonML data mappings presented in the previous section, a list of possible DBMSs for each
database is also generated and can be parsed by the TyphonDL creation wizard. Thus, the user can only
choose from the recommended DBMSs fitting the wanted requirements.

2. Deployment configurations are generated so to satisfy the selected requirements. To help the user im-
plement a deployment that satisfies all the needs previously defined in the TyphonML model, some
TyphonDL fragments can be generated automatically by exploiting available deployment patterns (see
the right hand side of Fig. 1). For instance, if the user wants to use a MongoDB and needs durability,
the journal14 can be activated in the deployment model by adding a command that is passed to the im-
age when the container is started. Since the field command15 in Docker Compose accepts a string array
or a string, in Listing 7 the command --journal is added as a Key_Value pair. In the Kubernetes speci-
fication command16 needs a string array, so Listing 8 is adjusted accordingly. Both additions to the model
result in enhanced deployment scripts.

1 container reviews : Docker {

2 deploys ReviewDB

3 ports {

4 target = 27017 ;

5 published = 27018 ;

6 }

7 command = --journal ;

8 }

Listing 7: Template for MongoDB with requirement durability using Docker Compose

14https://docs.mongodb.com/manual/reference/glossary/#term-journal
15https://docs.docker.com/compose/compose-file/#command
16https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.16/#container-v1-core

Page 16 Version 1.0
Confidentiality: Public Distribution

23 December 2019

https://docs.mongodb.com/manual/reference/glossary/#term-journal
https://docs.docker.com/compose/compose-file/#command
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.16/#container-v1-core

D3.3 TyphonML to TyphonDL Model Transformation Tools

1 container reviews : Docker {

2 deploys ReviewDB

3 ports {

4 target = 27017 ;

5 published = 31015 ;

6 }

7 command [--journal]

8 }

Listing 8: Template for MongoDB with requirement durability using Kubernetes with Docker
containers

The mapping of functional and nonfunctional requirements to the actual deployment specifications is defined
in separate configuration files for each DBMS and will be delivered with the forthcoming version of the Ty-
phonDL plugin.

23 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 17

D3.3 TyphonML to TyphonDL Model Transformation Tools

4 Conclusions

In this document we presented enhancements that have been operated to the TyphonML and TyphonDL tools to
enable the automated generation of deployment configurations satisfying requirements defined by the modeler.
In particular, the TyphonML language has been extended in order to enable the specification of functional and
non-functional requirements for each conceptual data entity specified in the TyphonML model being defined.

Feasibility checks have been also developed to check if the given requirements can be met by the available
DBMSs. TyphonML data mappings are now generated in a requirement-consistent way. Also the TyphonDL
tools have been enhanced so that deployment configurations can be generated by exploiting the availability of
reusable requirement implementation patterns.

The conceived techniques and tools will be improved in the forthcoming months in order to address unforeseen
requirements that can arise by the use case providers and by the other WPs.

Page 18 Version 1.0
Confidentiality: Public Distribution

23 December 2019

D3.3 TyphonML to TyphonDL Model Transformation Tools

References

[1] Divyakant Agrawal, Amr El Abbadi, Sudipto Das, and Aaron J. Elmore. Database scalability, elasticity,
and autonomy in the cloud. In Jeffrey Xu Yu, Myoung Ho Kim, and Rainer Unland, editors, Database
Systems for Advanced Applications, pages 2–15, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[2] Institut für angewandte Systemtechnik Bremen. D3.2 – TyphonDL Tools, 2019.

[3] Felix Gessert, Wolfram Wingerath, Steffen Friedrich, and Norbert Ritter. NoSQL database systems: a
survey and decision guidance. Computer Science - Research and Development, 32(3-4):353–365, July
2017.

[4] Frédéric Jouault and Ivan Kurtev. Transforming models with atl. In Proceedings of the 2005 International
Conference on Satellite Events at the MoDELS, MoDELS’05, pages 128–138, Berlin, Heidelberg, 2006.
Springer-Verlag.

[5] Dimitrios Kolovos, Louis Rose, Richard Paige, and Antonio Garcıa-Domınguez. The epsilon book. Struc-
ture, 178:1–10, 2010.

[6] DimitriosS. Kolovos, RichardF. Paige, and FionaA.C. Polack. The epsilon transformation language. In
Antonio Vallecillo, Jeff Gray, and Alfonso Pierantonio, editors, Theory and Practice of Model Transfor-
mations, volume 5063 of Lecture Notes in Computer Science, pages 46–60. Springer Berlin Heidelberg,
2008.

23 December 2019 Version 1.0
Confidentiality: Public Distribution

Page 19

	Introduction
	Structure of the deliverable

	Explicit management of functional and non-functional requirements in TyphonML models
	Overview of functional and non-functional data requirements
	Functional Requirements
	Non-functional Requirements

	Specification of data requirements and their feasibility checks
	Generation of TyphonML data mappings

	The TyphonML to TyphonDL transformation
	Conclusions

