

Project Partners: Alpha Bank, ATB, Centrum Wiskunde & Informatica, CLMS, Edge Hill University,
GMV, OTE, SWAT.Engineering, The Open Group, University of L’Aquila,
University of Namur, University of York, Volkswagen

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

TYPHON Project Partners accept no liability for any error or omission in the same.

© 2020 Copyright in this document remains vested in the TYPHON Project Partners.

Project Number 780251

D3.4 Hybrid Polystore Deployment Language
(Final Version)

Version 1.0
9 July 2020

Final

Public Distribution

ATB

D3.4 Hybrid Polystore Deployment Language (Final Version)

Page ii Version 1.0 9 July 2020

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Alpha Bank

Vasilis Kapordelis

40 Stadiou Street

102 52 Athens

Greece

Tel: +30 210 517 5974

E-mail: vasileios.kapordelis@alpha.gr

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

Tel: +49 421 22092 0

E-mail: scholze@atb-bremen.de

Centrum Wiskunde & Informatica

Tijs van der Storm

Science Park 123

1098 XG Amsterdam

Netherlands

Tel: +31 20 592 9333

E-mail: storm@cwi.nl

CLMS

Antonis Mygiakis

Mavrommataion 39

104 34 Athens

Greece

Tel: +30 210 619 9058

E-mail: a.mygiakis@clmsuk.com

Edge Hill University

Yannis Korkontzelos

St Helens Road

Ormskirk L39 4QP

United Kingdom

Tel: +44 1695 654393

E-mail: yannis.korkontzelos@edgehill.ac.uk

GMV Aerospace and Defence

Almudena Sánchez González

Calle Isaac Newton 11

28760 Tres Cantos

Spain

Tel: +34 91 807 2100

E-mail: asanchez@gmv.com

OTE

Theodoros E. Mavroeidakos

99 Kifissias Avenue

151 24 Athens

Greece

Tel: +30 697 814 7618

E-mail: tmavroeid@ote.gr

SWAT.Engineering

Davy Landman

Science Park 123

1098 XG Amsterdam

Netherlands

Tel: +31 633754110

E-mail: davy.landman@swat.engineering

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of L’Aquila

Davide Di Ruscio

Piazza Vincenzo Rivera 1

67100 L'Aquila

Italy

Tel: +39 0862 433735

E-mail: davide.diruscio@univaq.it

University of Namur

Anthony Cleve

Rue de Bruxelles 61

5000 Namur

Belgium

Tel: +32 8 172 4963

E-mail: anthony.cleve@unamur.be

University of York

Dimitris Kolovos

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325167

E-mail: dimitris.kolovos@york.ac.uk

Volkswagen

Behrang Monajemi

Berliner Ring 2

38440 Wolfsburg

Germany

Tel: +49 5361 9-994313

E-mail: behrang.monajemi@volkswagen.de

 D3.4 Hybrid Polystore Deployment Language (Final Version)

9 July 2020 Version 1.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Template creation 17.06.2020

0.2 Refinement of the document structure and first content 25.06.2020

0.3 First complete set of contributions collected 29.06.2020

0.4 Final version ready for internal proof-reading 01.07.2020

0.5 Sent out to project partners for external proof-reading 02.07.2020

0.6 Contributions from project partners integrated 06.07.2020

0.7 Additional updates from partner reviews 08.07.2020

1.0 Final version for EC submission 09.07.2020

D3.4 Hybrid Polystore Deployment Language (Final Version)

Page iv Version 1.0 9 July 2020

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 6

1.1 Overview .. 6

1.2 Structure of the deliverable ... 6

2. Deployment Technologies ... 7

2.1 Overview .. 7

2.2 Cloud Platforms .. 7

2.3 Containerised Applications using Docker ... 8

2.4 Container Management using Kubernetes .. 10

3. TyphonDL Design and Architechture ... 11

3.1 Language Design ... 11

3.2 TyphonML to TyphonDL Transformation ... 12

3.3 Configuration Parameters ... 12

4. TyphonDL Metamodel.. 13

5. TyphonDL Implementation .. 16

5.1 Overview .. 16

5.2 TyphonDL Concrete Syntax ... 17

5.3 TyphonDL Validation .. 22

6. Conclusion ... 23

7. References .. 27

TABLE OF FIGURES

Figure 1: An Example Application ... 7
Figure 2: Deployment Example for an Application .. 9
Figure 3: Configuration Script Example in Docker-Compose .. 10
Figure 4: TyphonDL Approach .. 12
Figure 5: The TyphonDL Meta-Model ... 16
Figure 6: TyphonDL Model Example for Docker-Compose .. 17

TABLE OF LISTINGS

Listing 1: TyphonDL Model Example - Database Type Declarations .. 18

Listing 2: TyphonDL Model Example using Docker-Compose – Database Specifications ... 18

Listing 3: TyphonDL Model Example using Docker-Compose - Type Declarations ... 19

Listing 4: TyphonDL Model Example using Docker-Compose - Deployment Platform and Container Specification 19

Listing 5: TyphonDL Model Example using Kubernetes – Database Specification... 21

Listing 6: TyphonDL Model Example using Kubernetes – Type Declarations .. 21

Listing 7: TyphonDL Model Example using Kubernetes – Deployment Platform and Container Specification 22

 D3.4 Hybrid Polystore Deployment Language (Final Version)

9 July 2020 Version 1.0 Page v

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This deliverable presents the final version of the TyphonDL modelling language. In

particular it presents the language concepts and architecture, its meta-model as well as

its implementation.

TyphonDL – Hybrid Polystore Deployment Language – is a modular language aiming

to bridge the conceptual gap between high-level polystore design models (expressed in

TyphonML and developed in Work Package 2), and low-level virtual image

configuration and assembly tools such as Docker and Kubernetes.

In this deliverable an overview of the deployment technologies that were studied in the

scope of the TyphonDL design and development is given and the requirements that

were outlined for TyphonDL are revisited.

Further, the final version of TyphonDL is introduced, in particular the language

architecture along with language syntax and implementation using the EMF-based

technologies. Furthermore, an example TyphonDL model is illustrated in concrete

syntax.

The deliverable is concluded with an evaluation of the requirements outlined for

TyphonDL together with major points with respect to the strengths and limitations of

the language as well as its future outlook.

D3.4 Hybrid Polystore Deployment Language (Final Version)

Page 6 Version 1.0 9 July 2020

Confidentiality: Public Distribution

1. INTRODUCTION

1.1 OVERVIEW

This document presents the work done in task T3.1 Hybrid Polystore Deployment

Language (TyphonDL) Design. The main objective of T3.1 is to define the syntax and

the semantics of TyphonDL, a modular language aiming to bridge the conceptual gap

between high-level polystore design models (expressed in TyphonML and developed in

work package 2), and low-level virtual image configuration and assembly tools such as

Docker-Compose
1
 and Kubernetes

2
 (see section 2). TyphonDL will be specified in an

iterative manner by executing two subsequent steps:

 elicitation of new concepts from the domain of virtual image configuration and

assembly tools domain, and

 validation of the elicited concepts by specifying concrete hybrid polystore

deployments.

This document extends the first version of TyphonDL given in D3.1 and presents the

final version of TyphonDL. It elaborates on the language features resulted from a

progression --- starting from the analysis of the TyphonML development and the

requirements collected during the requirements analysis phase of the project (Work

Package 1) to create the syntax and semantics of TyphonDL.

1.2 STRUCTURE OF THE DELIVERABLE

The deliverable is structured as follows:

 Section 2 gives an overview of the deployment technologies that were studied in

the scope of the TyphonDL design and development, and revisits the

requirements that were outlined for TyphonDL.

 Section 3 introduces the language design aspects and architecture of TyphonDL,

 Section 4 presents the meta-model in particular its abstract syntax in detail,

 Section 5 focuses on the implementation of TyphonDL, in particular presenting

the textual language in terms of concrete syntax, using the EMF-based

technologies (Xtext
3
), and illustrates an example TyphonDL model given in

concrete syntax, and presents validation support for TyphonDL implemented in

Xtend
4
,

 Section 6 concludes the document and evaluates the requirements for

TyphonDL.

1
 https://docs.docker.com/compose

2
 https://kubernetes.io

3
 https://www.eclipse.org/Xtext/

4
 https://www.eclipse.org/xtend/

 D3.4 Hybrid Polystore Deployment Language (Final Version)

9 July 2020 Version 1.0 Page 7

Confidentiality: Public Distribution

2. DEPLOYMENT TECHNOLOGIES

This section introduces the fundamental concepts in the context of deployment

technologies and the state-of-the-art tools used for them.

2.1 OVERVIEW

An application software (or application for short) is a single or a group of software

programs designed for end-users. In the context of deployment modelling in this

document, the individual software programs that comprise an application will be

referred to as services. Figure 1 illustrates a simple example of an application named

Weather Warning application that consists of four databases services: Two database

services based on MariaDB
5
 and two database services based on MongoDB

6
.

Figure 1: An Example Application

2.2 CLOUD PLATFORMS

Cloud platforms are platforms on the internet that provide cloud computing services and

offer computation power, database storage, content delivery and other functionalities to

businesses to support their product development. The cloud infrastructure is maintained

by the platform provider and not by the individual platform user, which allows

businesses and other application developers to focus completely on the product they are

creating without any concerns on the underlying infrastructure to run their applications.

Cloud platforms offer a wide range of benefits from providing flexibility in terms of 1)

the scaling of infrastructure on demand in order to accommodate for varying workload;

2) public, private or hybrid storage options to meet the required security standards; 3)

5
 www.mariadb.org

6
 www.mongodb.com

D3.4 Hybrid Polystore Deployment Language (Final Version)

Page 8 Version 1.0 9 July 2020

Confidentiality: Public Distribution

tool selection, to allow for accessibility of applications and data virtually from any

device connected to the internet. This makes cloud platforms increasingly popular and

useful.

Amazon Web Services
7
, Microsoft Azure

8
, Google Cloud

9
, IBM Cloud

10
 and Oracle

Cloud
11

 are amongst the most leading cloud platform providers.

2.3 CONTAINERISED APPLICATIONS USING DOCKER

A container is a standard unit of software that packages up code and all its

dependencies, so the application runs quickly and reliably from one computing

environment to another.

A Docker
12

 container image is a lightweight, standalone, executable package of

software that includes everything needed to run an application: code, runtime, system

tools, system libraries and settings
13

. Contrary to virtual machines, multiple containers

can share the OS kernel with other containers, thus taking up less space.

Images can be pulled from Docker-Hub
14

, company specific registries
15

 either local or

externally accessible (authentication with apache and nginx possible) or the Docker

Trusted Registry (DTR)
16

, which is the enterprise-grade image storage solution from

Docker.

Running multiple containers can be configured with the tool Docker-Compose
17

. All

needed parts of an application (services) are defined in a YAML
18

 file, which is used to

create and start all needed containers with a single command.

In Docker-Compose, it is possible to specify the interplay between components in a

deployment configuration – either linking to other services inside or even outside the

docker-compose.yaml. Deployment properties (e.g., the computing power/number of

CPUs to be used, amount of memory to be used, path to persistent storage, shared

networks, etc.) can easily be added and edited.

The deployment of the explanatory Weather Warning application can be exemplified as

in Figure 2:

7
 https://aws.amazon.com

8
 https://azure.microsoft.com

9
 https://cloud.google.com

10
 https://www.ibm.com/cloud/

11
 https://cloud.oracle.com

12
 https://www.docker.com/

13
 https://www.docker.com/resources/what-container

14
 https://hub.docker.com/

15
 https://docs.docker.com/registry/

16
 https://docs.docker.com/datacenter/dtr/2.1/guides/

17
 https://docs.docker.com/compose/

18
 https://yaml.org/

 D3.4 Hybrid Polystore Deployment Language (Final Version)

9 July 2020 Version 1.0 Page 9

Confidentiality: Public Distribution

Figure 2: Deployment Example for an Application

Each database service in the Weather Warning application in Figure 1 is deployed as

service instance separately in a Docker container on the AWS cloud platform.

Figure 3 shows the corresponding deployment configuration specification for this

application, where Docker Container 1 is named as vehiclemetadatadb, Docker

container 2 is named appdata, Docker Container 3 is named textwarningdata and the

Docker Container 4 is named as vehicledatadb. A service codifies the way an image

runs. For example, the service vehiclemetadatadb uses the standard MariaDB image

from the Docker-Hub

https://hub.docker.com/_/mariadb/

plus a configuration-file, which changes the default database charset to utf8. Both

services use gitlab as private container registry.

https://hub.docker.com/_/mariadb/

D3.4 Hybrid Polystore Deployment Language (Final Version)

Page 10 Version 1.0 9 July 2020

Confidentiality: Public Distribution

version: '3.7'

services:
 vehiclemetadatadb:
 image: mariadb:latest
 environment:
 MYSQL_ROOT_PASSWORD: Tm20Mel65SOhedML
 ports:
 - target: 3306
 published: 3306
 deploy:
 resources:
 limits:
 cpus: '0.5'
 memory: 512M
 reservations:
 cpus: '0.25'
 memory: 256M
appdata:
 image: mariadb:latest
 environment:
 MYSQL_ROOT_PASSWORD: Mt9Z45daWtwO4d
 ports:
 - target: 3306
 published: 3306

 vehicledatadb:
 image: mongo:latest
 command: mongod --replSet vehicledatadbReplset
 vehicledatadb-replica1:
 image: mongo:latest
 command: mongod --replSet vehicledatadbReplset
 vehicledatadb-replica2:
 image: mongo:latest
 command: mongod --replSet vehicledatadbReplset
 vehicledatadb-replica3:
 image: mongo:latest
 command: mongod --replSet vehicledatadbReplset
 vehicledatadb-rsinit:
 build:
 context: .
 dockerfile: vehicledatadb/rsinit
 entrypoint: [
 'sh',
 '-c',
 'init_set.sh'
]
textwarningdata:
 image: mongo:latest
 environment:
 MONGO_INITDB_ROOT_USERNAME: user
 MONGO_INITDB_ROOT_PASSWORD: Jdk4g3kK0gtO2gkq

Figure 3: Configuration Script Example in Docker-Compose

2.4 CONTAINER MANAGEMENT USING KUBERNETES

In large-scale applications comprising hundreds of containers spread across multiple

hosts, containers need to be managed and connected to the outside world for tasks such

as scheduling, load balancing, and distribution. Docker images can be deployed and

 D3.4 Hybrid Polystore Deployment Language (Final Version)

9 July 2020 Version 1.0 Page 11

Confidentiality: Public Distribution

managed by container management solutions, such as Apache Mesos
19

, Docker

Swarm
20

, or Kubernetes
21

.

As a first step in TyphonDL, Kubernetes is used as a container management system in

the deployment of hybrid polystores, which can be extended to other container

management systems in the future if desired. Kubernetes is an open source tool to

orchestrate and manage containers. Furthermore, Kubernetes has good compatibility

with Docker. It has been developed by Google and is one of the most used instruments

for this purpose. Kubernetes allows removing many of the manual processes involved in

the deployment and scalability of containerised applications and manage easily and

efficiently clusters of hosts on which containers are executed (see D1.1 [1]).

3. TYPHONDL DESIGN AND ARCHITECHTURE

In this section the design and architecture of TyphonDL is presented.

3.1 LANGUAGE DESIGN

While TyphonML models represent the high-level infrastructure of a hybrid polystore in

terms of the conceptual entities to be managed and the corresponding database systems

that are involved, TyphonDL models represent the deployment infrastructure of that

polystore in terms of the specific cloud platform and deployment tools employed. The

general approach of how TyphonDL is used for modelling the deployment infrastructure

of a hybrid polystore is illustrated in Figure 4. A TyphonDL model requires two sources

of input:

 A TyphonML model, from which database specific information is extracted for

the TyphonDL model (e.g., which individual databases are used to manage the

modelled data entities and relationships).

 Deployment specific values that instantiate configuration parameters, which

generate a ready-to-use configuration file for the actual deployment task on a

cloud platform.

The deployment specific configuration parameters can be supplied by a modeller or by a

user of the polystore in textual form directly in the TyphonDL model itself (see section

5) or via a graphical editor that provides configuration-specific input automatically in

the TyphonDL model (see D3.5 [2]).

19

 http://mesos.apache.org/
20

 https://docs.docker.com/engine/swarm/
21

 https://kubernetes.io/

D3.4 Hybrid Polystore Deployment Language (Final Version)

Page 12 Version 1.0 9 July 2020

Confidentiality: Public Distribution

Figure 4: TyphonDL Approach

The remaining of this section is organised as follows: In section 3.2 the transformation

from TyphonML models to TyphonDL models is elaborated. In section 3.3

configuration-specific parameters required for the creation of TyphonDL models are

described.

3.2 TYPHONML TO TYPHONDL TRANSFORMATION

Recalling that a TyphonML model is a high-level specification of the database

infrastructure of a hybrid polystore, TyphonDL follows the principle that each

individual database installation will be deployed on a cloud platform in a separate

container. Furthermore, based on what type of database systems are being modelled, the

configuration parameters for those specific database systems will vary in the

deployment model. In order to automatically generate the respective set of configuration

parameters for different types of databases, the transformation of a TyphonML model

extracts the database type for each database declaration and their names in a TyphonML

model and adds this information in the TyphonDL model respectively (see details in

deliverable D3.3 [3]).

3.3 CONFIGURATION PARAMETERS

In order to generate a ready-to-use configuration script for the deployment of a

polystore, the following parameters are necessary to be provided either by the

modeller/polystore user:

 Cloud platform provider: The user can choose a specific cloud platform provider

such as AWS, Google Cloud, Microsoft Azure, etc.

 Deployment configuration format: The user can choose a specific deployment

configuration format such as Docker-Compose or Kubernetes.

 Container format: The user can choose which containerisation technology should

be used, such as Docker, or rkt
22

.

22

 https://coreos.com/rkt/

 D3.4 Hybrid Polystore Deployment Language (Final Version)

9 July 2020 Version 1.0 Page 13

Confidentiality: Public Distribution

 DBMSs: Based on the type of database retrieved from a TyphonML model, the

user can choose a specific database system such as MariaDB
23

 or MySQL
24

 for a

relational database, MongoDB
25

 as a document-based database, Cassandra
26

 as a

column-based database, and Neo4j
27

 as a graph-oriented database.

 Configuration parameters: From a list of standard configuration parameters, the

user can choose which ones should be included in the TyphonDL model such as

storage space or computing power required for each container, container access,

which network a container is connected to, data storage or exchange in/amongst

containers, database-specific parameters such as credentials or access URI.

4. TYPHONDL METAMODEL

This section introduces the metamodel that formalises the concepts that constitute the

language primitives of TyphonDL. Meta-classes are shown in Figure 5 and described

below and are presented using the font as in font:

DeploymentModel represents the root container of each TyphonDL specification and

consists of two distinct elements:

 MetaModel: It represents the set of operators on TyphonDL models.

 Model: It represents the set of concepts that will be used in a TyphonDL model.

These elements are further defined as follows:

MetaModel consists of the import operation that allows a TyphonDL model to include

the contents of another TyphonDL model.

Model consists of the following classes that categorise the components of a TyphonDL

model:

 Type: It represents the collection of all types that are used in a TyphonDL model.

 Services represents the collection of deployable software services.

 Platform represents the logical units in a deployment environment.

Type consists of the following types:

 PlatformType represents the set of different types of platforms that can be used in

a deployment task in the cloud. Example platform types are the Amazon Web

Services cloud services platform, Microsoft Azure, Google Cloud etc.

 ClusterType represents the set of different types of schemes to govern over a

cluster of containers.

23

 https://mariadb.org/
24

 https://www.mysql.com/
25

 https://www.mongodb.com/
26

 http://cassandra.apache.org/
27

 https://neo4j.com/

D3.4 Hybrid Polystore Deployment Language (Final Version)

Page 14 Version 1.0 9 July 2020

Confidentiality: Public Distribution

 ContainerType represents the set of different types of containerisation software

that can be used in a deployment task. Example container types are Docker, rkt,

VirtualBox, VMWare, etc.

 DBType represents the collection of different database management systems such as

MariaDB, MongoDB, Neo4j, Cassandra, etc.

Services distinguish between of database services DB and all other software services

Software.

 Database services DB are named elements typed by a database type defined by

DBType.

 Software is a named element and consists of a list of configuration parameters

including image, URI, environment and properties.

Platform is a named element and typed by a platform type defined by

PlatformType. It permits to model an individual platform space on a specific platform

provider. It consists of a list of cluster declarations.

Cluster is a named element and typed by a cluster type defined by ClusterType. It

consists of a list of application declarations.

Application is a named element that represents a software-based application that is

possibly composed of several smaller software components that are deployed in

individual containers.

Container is a named element that is typed by a container type defined by

ContainerType. It represents a container or a virtual machine and consists of a list

configuration elements that are part of the TyhonDL metamodel or other container

specific properties that are defined by Property.

Configuration elements consist of a set of pre-selected standard deployment

configuration parameters. These parameters are the following ones.

 Image: The image that contains a set of instructions for creating a container.

 HelmList: The list of specifications to use Helm charts
28

 to define the setup

configuration of database deployments. In particular, the name of the Helm chart,

the repository name and the repository address of the respective Helm chart are

specified.

 Environment: The environment parameters used in the setup configuration of

database deployments.

 Credentials: The credentials to be defined in the setup configuration of

database deployments.

28

 www.helm.sh/docs/topics/charts/

 D3.4 Hybrid Polystore Deployment Language (Final Version)

9 July 2020 Version 1.0 Page 15

Confidentiality: Public Distribution

 URI: The URI for a database or a container through which they are accessed by

Typhon

 deploys: The link between a service specification and the respective container it

is deployed in.

 depends_on: The dependency relation between two containers.

 Networks: The network parameters to which a container is part of are specified.

 Ports: The parameters that publish a container to be reachable outside of a

polystore network are specified. These parameters are typically a target port for

the container, and a published port that makes the container available outside of

the polystore.

 Resources: The parameters that control or limit the resources allocated to a

container, such as CPU and memory.

 Replication: The parameters to define replicated instances of a container based

on a specific replication mode including master-slave (primary-replica), replica

set and stateless replication.

 Volumes: The mount parameters for the directories in a container to save data or

share data between containers. The parameters are the volume name, the mount

path, the volume type and any other technology specific parameters for a volume.

Property is a set of three different kinds of configuration declarations in the form of:

 Key-value pairs (Key_Values),

 key and array of values (Key_ValueArray),

 list of key-value pairs (Key_KeyValueList)

and permit to represent any other configuration properties that are specific to

individual containerisation technologies.

D3.4 Hybrid Polystore Deployment Language (Final Version)

Page 16 Version 1.0 9 July 2020

Confidentiality: Public Distribution

Figure 5: The TyphonDL Meta-Model

5. TYPHONDL IMPLEMENTATION

5.1 OVERVIEW

In this section the implementation of the metamodel of TyphonDL is presented. The

implementation of TyphonDL is given as an EMF/Ecore [4] model.

In parallel to this implementation, the TyphonDL Wizard is implemented, which allows

polystore designers and users to create TyphonDL models from user input through a

graphical editor (see D3.5 [2]). The need for both a textual and a graphical editor for

TyphonDL was acknowledged by the TYPHON project partners in the early stages of

the project.

The TyphonDL textual editor is developed in XText
29

, an Eclipse project for the design

and development of domain-specific languages. The implementation of TyphonDL in

XText follows from the grammar definition for the concrete syntax for TyphonDL.

29

 https://www.eclipse.org/Xtext/

 D3.4 Hybrid Polystore Deployment Language (Final Version)

9 July 2020 Version 1.0 Page 17

Confidentiality: Public Distribution

Upon the compilation of the TyphonDL grammar, XText generates an Ecore-model, the

internal infrastructure for the parsing, linking, type-checking of TyphonDL models

written textually in XText.

5.2 TYPHONDL CONCRETE SYNTAX

In this section, the concrete syntax of TyphonDL is described using an example

TyphonDL model as illustrated in Figure 6.

Figure 6: TyphonDL Model Example for Docker-Compose

This TyphonDL model is generated using the TyphonDL Wizard (see D3.5 [2] for more

details) by taking a TyphonML model and user inputs for deployment configuration

parameters. It consists of a list of imports of automatically generated TyphonDL models

based on the TyphonML model input. These imports are declared using the TyphonDL

keyword import for import.

Database types are given in the dbTypes.tdl file, which consists of the following

database type declarations in Listing 1, where each database type is declared using the

TyphonDL keyword dbtype.

D3.4 Hybrid Polystore Deployment Language (Final Version)

Page 18 Version 1.0 9 July 2020

Confidentiality: Public Distribution

dbtype Mongo {
 default image = mongo:latest;
}
dbtype MariaDB {
 default image = mariadb:latest;
}

Listing 1: TyphonDL Model Example - Database Type Declarations

Furthermore, each database type declaration must consist of a default image from which

the respective database system can be deployed in a container.

The remaining .tdl files consist of specific database declarations based on the database

models extracted from the initial TyphonML model.

After introducing these two database systems in TyphonDL as dbtype declarations,

individual databases can be declared using the TyphonDL constructor database as in

the example of Listing 2.

database TextWarningData : Mongo {
 credentials {
 username = user;
 password = TT3s=RA1spIKALJA;
 }
}
external database AppData : MariaDB {
 uri = 192.168.11.40:8080;
 credentials {
 username = root;
 password = OdgU9gP0bosqDle9;
 }
}

Listing 2: TyphonDL Model Example using Docker-Compose – Database Specifications

The first database specification above is a Mongo database named TextWarningData

and typed by the database type Mongo. The database configuration for

TextWarningData introduces credentials (username and password) for a user using the

TyphonDL keyword credentials.

Database specifications can optionally use the external attribute to mark a database to

be external. This is used to annotate that the database that is being introduced is already

an existing database installation that runs outside of the Typhon polystore and is

accessible at the given URI.

The deployment example used in this TyphonDL model uses Docker containers,

Docker-Compose as the container configuration format, and Amazon Web Services

(AWS) as the platform provider. More specifically, this is modelled by the type

declarations as can be seen in Listing 3.

 D3.4 Hybrid Polystore Deployment Language (Final Version)

9 July 2020 Version 1.0 Page 19

Confidentiality: Public Distribution

containertype Docker
clustertype DockerCompose
platformtype AWS

Listing 3: TyphonDL Model Example using Docker-Compose - Type Declarations

The next part in this example is the specification of the deployment platform and the

containers to be deployed as given in

Listing 4.
containertype Docker
clustertype DockerCompose
platformtype localhost
platform platformName : localhost {
 cluster clusterName : DockerCompose {
 application Polystore {
 container textwarningdata : Docker {
 deploys TextWarningData
 ports {
 target = 27017;
 published = 27017;
 }
 resources {
 limitCPU = 0.5;
 limitMemory = 512M;
 reservationCPU = 0.25;
 reservationMemory = 256M;
 }
 uri = textwarningdata:27017;
 replication {
 replicas = 3;
 mode = replicaSet;
 }

volumes {
 volumeName = textwarningdata;

mountPath = /textwarningdata;
volumeType = volume;
volume {
 nocopy = true;
}

 }
 }

Volumes textwarningdata;
}

}
 }

Listing 4: TyphonDL Model Example using Docker-Compose - Deployment Platform
and Container Specification

The TyphonDL keyword platform declares a platform of type AWS named

platformName, which consists of a cluster declaration named clusterName and is

D3.4 Hybrid Polystore Deployment Language (Final Version)

Page 20 Version 1.0 9 July 2020

Confidentiality: Public Distribution

of cluster type DockerCompose. The cluster clusterName consists of an application

declaration named Polystore.

Inside the application Polystore one Docker container is specified: The TyphonDL

keyword container declares a container named textwarningdata and typed by the

container type Docker. In this container declaration the following configuration

parameters are specified:

 Keyword deploys links the container textwarningdata to the Mongo database

specification TextWarningData,

 Keyword ports specifies the ports at which the container textwarningdata
will be accessible. In this example, the target port and the published port for this

container are specified.

 Keyword resources specifies limit and reservation properties on the CPU and

memory allocation for the container textwarningdata. The limit properties are

given using limitCPU and limitMemory, and the reservation properties are given

using reservationCPU and reservationMemory.

 Keyword uri specifies the URI of the container textwarningdata.

 Keyword replication specifies the number of replicas to be created including

the container textwarningdata itself using the primary-replica replication. It

uses the keyword replica to set the replica number and mode for the specific

kind of replica setup, which is in this example replicaSet.

 Keyword volumes specifies the name of the volume using the keyword

volumeName, its mount directory using keyword mountPath, and the volume type

using the keyword volumeType. Additionally, in this example, further volume

specific configuration parameter nocopy is specified to be true.

These configuration parameters are then translated by the Typhon Script Generator (see

D3.5 [2]) to the respective Docker-Compose specification in the yaml-format.

The above TyhonDL examples used Docker-Compose as the underlying

containerisation technology. Alternatively, using Kubernetes as the underlying

containerisation technology, the same polystore example can be modelled as illustrated

in Listing 5 through Listing 7.

In the database specification in Listing 5, Kubernetes specific configuration details for

the database TextWarningData are specified using a Helm chart. The keyword helm
introduces the Helm chart parameters such as the repository name and address using the

keywords repoName and repoAddress, respectively, as well as the name of the chart

using chartName. The remaining of the specifications in TextWarningData is

credentials.

 D3.4 Hybrid Polystore Deployment Language (Final Version)

9 July 2020 Version 1.0 Page 21

Confidentiality: Public Distribution

database TextWarningData : Mongo {
 helm {
 repoName = bitnami;
 repoAddress = https://charts.bitnami.com/bitnami;
 chartName = mongodb;
 }
 credentials {
 username = user;
 password = KY92flr05L1bma3m;
 }
}
Listing 5: TyphonDL Model Example using Kubernetes – Database Specification

The following TyphonDL type declarations in Listing 6 are necessary to choose Kuber-

netes as the underlying containerization technology in this example.
containertype Docker
clustertype Kubernetes
platformtype minikube

Listing 6: TyphonDL Model Example using Kubernetes – Type Declarations

In Listing 7, the platform and container specifications are given. It is important to note

that this model differentiates from the TyphonDL model example in Listing 4 only in

terms of platform type and cluster type used, which are given above, and the volumes

specification in the container textwarningdata. In particular, the volumes declaration

uses a volume type that is specific to Kubernetes that allows persistent volumes and an

additional configuration declaration required by this volume type.

D3.4 Hybrid Polystore Deployment Language (Final Version)

Page 22 Version 1.0 9 July 2020

Confidentiality: Public Distribution

platform platformName : minikube {
 cluster clusterName : Kubernetes {
 application Polystore {
 container textwarningdata : Docker {
 deploys TextWarningData
 ports {
 target = 27017;
 published = 27017;
 }
 resources {
 limitCPU = 0.5;
 limitMemory = 512M;
 reservationCPU = 0.25;
 reservationMemory = 256M;
 }
 uri = textwarningdata:27017;
 replication {
 replicas = 3;
 mode = replicaSet;
 }

volumes {
 volumeName = textwarningdata;

mountPath = /textwarningdata;
volumeType = persistentVolumeClaim;
claimName = true;

 }
 }

}
}

}
Listing 7: TyphonDL Model Example using Kubernetes – Deployment Platform and
Container Specification

5.3 TYPHONDL VALIDATION

Validation is a necessary step to prevent a modeller from adding semantically

meaningless content in a model, although it might still be syntactically well-formed. It

is a standard approach in language design and implementation to define the syntax of

the language and a set of validation rules for the correct use of syntax.

In TyphonDL, Xtend
30

 is used to introduce validation rules for this purpose. In

particular, the validation rules in TyphonDL are categorised as follows:

 Unique Declarations: It is not allowed to have multiple occurrences of the same

declaration in a TyphonDL model.

 Technology Specific Keywords: It is not allowed to use a random keyword in a

TyphonDL model that does not belong to the set of keywords in the chosen

30

 www.eclipse.org/xtend/

 D3.4 Hybrid Polystore Deployment Language (Final Version)

9 July 2020 Version 1.0 Page 23

Confidentiality: Public Distribution

containerisation technology. This is implemented specifically for in Docker-

Compose and Kubernetes.

 Database Systems: It is checked in the declaration of a database system using

dbtype whether the image of that database does mention the database name.

6. CONCLUSION

This document presents results of the work done in WP3 and details the TyphonDL

language for the modelling and deployment of the envisioned polystore systems. It

includes the concepts required to generate deployable solutions based on TyphonML

models.

TyphonDL is defined along a list of technology and industrial use case requirements

that are set at the beginning of the project in D1.1 [1]. An evaluation of TyphonDL with

respect to those requirements is given in Table 1 and Table 2. Further evaluation of

TyphonDL with respect to its strengths and limitations is presented and a future outlook

is discussed below.

Table 1: TyphonDL Technology Requirements

ID Requirement Priority Status

12 TyphonDL models shall allow for specification of

the components in deployment configuration.

SHALL Implemented

13 TyphonDL models shall allow for specification of

interplay between components in deployment

configuration.

SHALL Implemented

14 TyphonDL models shall allow for specification of

deployment operations on the components.

SHALL Implemented

15 TyphonDL shall be adaptable to the de facto

standard virtual image configuration technique

Docker.

SHALL Implemented

16 TyphonDL models shall allow for the definition of

deployment properties.

SHALL Implemented

17 TyphonDL shall allow for the definition of

individual nodes.

SHALL Implemented

18 TyphonDL shall allow for the definition of

standard configuration concepts.

SHALL Implemented

19 The Hybrid Polystore Deployment shall support

scalability to large amounts of data.

SHALL Implemented

(using

Kubernetes)

D3.4 Hybrid Polystore Deployment Language (Final Version)

Page 24 Version 1.0 9 July 2020

Confidentiality: Public Distribution

ID Requirement Priority Status

20 The Hybrid Polystore Deployment component

shall develop tools and services to define (and

edit) deployment specifications.

SHALL Implemented

21 TyphonDL should support templates for creation

of Polystore Deployments.

SHOULD Implemented

22 TyphonDL should allow defining the level of

redundancy for the database instance so that some

consistency checks on the data can be supported.

SHOULD Implemented

for some

DBMS

23 The Polystore Deployment should be compatible

with several cloud platform providers.

SHOULD Implemented

for cloud

platforms

supporting

Docker

24 TyphonDL should allow for the definition of

collection/cluster of nodes

SHOULD Implemented

25 TyphonDL may be adaptable to other virtual

image configuration techniques.

MAY The tools are

prepared to

be extended

Prototype

implementati

on is for

Docker/Kube

rnetes

26 TyphonDL may support heterogeneous cloud

platforms.

MAY Implemented

27 The hybrid polystore shall support the deployment

and execution of text processing pipelines.

SHALL Part of Ana-

lytics De-

ployment

Table 2: TyphonDL Industrial Use Case Requirements

ID Requirement Priority Status

30 The polystore deployment language shall allow to

define distributed topologies with database master

and slave nodes

SHALL Implemented

31 The polystore deployment language shall allow to

define the level of redundancy for the database

instance

SHALL Implemented

 D3.4 Hybrid Polystore Deployment Language (Final Version)

9 July 2020 Version 1.0 Page 25

Confidentiality: Public Distribution

ID Requirement Priority Status

32 The polystore deployment language should be

based on standard file formats (JSON, XML, etc.)

SHOULD Implemented

33 The polystore deployment language shall allow to

size each individual node storage space

SHALL Implemented

34 The polystore deployment language should allow

to embed the configuration of the underlying

cloud manager so that a single configuration file is

handled to generate the final virtual machines

SHOULD Implemented

35 The polystore deployment language should allow

to embed the configuration of the underlying

database servers (e.g. based on SQL, Lucene etc.)

so that the overall instance can be tuned at

deployment time

SHOULD Implemented

36 The polystore deployment language shall allow to

define collections of nodes without requiring each

individual node to be configured in a separate

section

SHALL Implemented

37 The polystore deployment language should allow

a mechanism to deal with elastic instances, in

which nodes are started and stopped when needed

SHOULD Implemented

38 The polystore deployment language shall support

adding additional datastores

SHALL Implemented

39 The polystore deployment language should

provide an API that is accessible through .NET

SHOULD Not

implemented

Access to

polystore will

be handled

via

polystoreAPI

only

 Strengths:

 TyphonDL is designed as a meta-containerisation language. It is

technology-independent and abstracts away from concrete language and

implementation details of containerisation technologies. This permits

TyphonDL to model various different specific containerisation technologies

besides the most commonly used ones.

D3.4 Hybrid Polystore Deployment Language (Final Version)

Page 26 Version 1.0 9 July 2020

Confidentiality: Public Distribution

 The declarative nature of TyphonDL is especially useful to specify concrete

database or software implementations in a flexible way that are part of the

modelled polystore and allows the possibility to introduce individual

systems or new versions of existing systems in the model itself on demand.

 TyphonDL is an extensible language. New language features can be easily

added to TyphonDL to support possible future forms of polystore

architectures.

 Limitations: TyphonDL does not provide support for aliases or language-specific

notations used in individual containerisation technologies as these are not an

essential part of deployment modelling and are typically custom-defined in each

specific technology. This has the consequence that TyphonDL-generated

configuration scripts always use one default syntax of the respective

containerisation technology. Any desired notations or aliases can be however

always manually added in the generated configuration script.

 Future Outlook: The strengths mentioned above makes TyphonDL scalable to a

wide range of application domains. In the long-term perspective, TyponDL can be

extended to support, along with the strong modelling features of TyphonML, a

user community of Typhon-based polystore applications.

 D3.4 Hybrid Polystore Deployment Language (Final Version)

9 July 2020 Version 1.0 Page 27

Confidentiality: Public Distribution

7. REFERENCES

[1] TYPHON Consortium, „D1.1 Project Requirements,“ 2018.

[2] TYPHON Consortium, „D3.5 Optimized Hybrid Polystore VM Assembly Tools,“ 2020.

[3] TYPHON Consortium, „D3.3 TyphonML to TyphonDL Model Transformation Tools,“ 2019.

[4] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick und T. Grose., Eclipse Modeling Framework,

Addison wesley, 2003.

[5] TYPHON Consortium, „D7.1 Architectural Guidelines Report,“ 2018.

