
Project Number 780251

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Version 1.0
22 December 2018

Final

Public Distribution

University of L’Aquila

Project Partners: Alpha Bank, ATB, Centrum Wiskunde & Informatica, CLMS, Edge Hill University,
GMV, Nea Odos, The Open Group, University of L′Aquila, University of Namur,
University of York, Volkswagen

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
TYPHON Project Partners accept no liability for any error or omission in the same.

© 2018 Copyright in this document remains vested in the TYPHON Project Partners.

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Project Partner Contact Information

Alpha Bank ATB
Vasilis Kapordelis Sebastian Scholze
40 Stadiou Street Wiener Strasse 1
102 52 Athens 28359 Bremen
Greece Germany
Tel: +30 210 517 5974 Tel: +49 421 22092 0
E-mail: vasileios.kapordelis@alpha.gr E-mail: scholze@atb-bremen.de
Centrum Wiskunde & Informatica CLMS
Tijs van der Storm Antonis Mygiakis
Science Park 123 Mavrommataion 39
1098 XG Amsterdam 104 34 Athens
Netherlands Greece
Tel: +31 20 592 9333 Tel: +30 210 619 9058
E-mail: storm@cwi.nl E-mail: a.mygiakis@clmsuk.com
Edge Hill University GMV Aerospace and Defence
Yannis Korkontzelos Almudena Sánchez González
St Helens Road Calle Isaac Newton 11
Ormskirk L39 4QP 28760 Tres Cantos
United Kingdom Spain
Tel: +44 1695 654393 Tel: +34 91 807 2100
E-mail: yannis.korkontzelos@edgehill.ac.uk E-mail: asanchez@gmv.com
Nea Odos The Open Group
Konstantinos Papathanasiou Scott Hansen
Themistocleous 87 Rond Point Schuman 6, 5th Floor
106 83 Athens 1040 Brussels
Greece Belgium
Tel: +30 210 344 7300 Tel: +32 2 675 1136
E-mail: kpapathanasiou@neaodos.gr E-mail: s.hansen@opengroup.org
University of L′Aquila University of Namur
Davide Di Ruscio Anthony Cleve
Piazza Vincenzo Rivera 1 Rue de Bruxelles 61
67100 L’Aquila 5000 Namur
Italy Belgium
Tel: +39 0862 433735 Tel: +32 8 172 4963
E-mail: davide.diruscio@univaq.it E-mail: anthony.cleve@unamur.be
University of York Volkswagen
Dimitris Kolovos Behrang Monajemi
Deramore Lane Berliner Ring 2
York YO10 5GH 38440 Wolfsburg
United Kingdom Germany
Tel: +44 1904 325167 Tel: +49 5361 9-994313
E-mail: dimitris.kolovos@york.ac.uk E-mail: behrang.monajemi@volkswagen.de

Page ii Version 1.0
Confidentiality: Public Distribution

22 December 2018

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Document Control
Version Status Date

0.1 Document outline 1 August 2018
0.2 First draft 23 September 2018
0.7 First full draft 1 December 2018
0.8 Further editing draft 15 December 2018
1.0 QA review 22 December 2018

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page iii

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Table of Contents

1 Introduction 1

1.1 Structure of the deliverable . 1

2 Validation of the TyphonML language 2

2.1 Validation with respect to the Use case requirements . 2

2.2 Validation with respect to technical requirements of WP2 . 7

2.3 Summary of the requirements not satisfied by the initial version of TyphonML 9

3 The revised TyphonML language 10

3.1 Relational database concepts . 12

3.2 Document database concepts . 13

3.3 Key-value database concepts . 13

3.4 Graph database concepts . 14

3.5 Column database concepts . 15

3.6 TyphonML change operators . 16

3.6.1 Change operators for conceptual elements . 16

3.6.2 Change operators for logical elements . 18

3.6.3 Use of the TyphonML change operators . 20

3.7 Enabling natural language processing . 20

4 Hybrid Polystore Access Infrastructure and API 22

4.1 A microservice-based architecture for the Polystore API . 22

4.2 The Data Access Layer Generation Process . 24

4.3 Managing data relationships . 28

4.3.1 One-to-Many relationships . 29

4.3.2 Many-to-Many relationships . 29

5 Conclusions 32

Page iv Version 1.0
Confidentiality: Public Distribution

22 December 2018

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Executive Summary

Relational database management systems (RDBMS) have become over the years the predominant choice for
storing large volumes of data. As such, various techniques and tools have been developed to support their
design and development. In recent years, NoSQL databases have emerged as an alternative approach to data
storage, lauded for their horizontal scalability and flexibility. NoSQL database systems have come a long
way, however they still remain far from the level of maturity of relational databases. While there is some
work towards this direction, the proposed solutions are technology-specific and not applicable across different
classes of NoSQL data stores.

This document presents the final version of the TyphonML language, a new language for modeling in a homo-
geneous manner (and by abstracting the specificities of the underlying technologies) the data to be stored in
polystores consisting of both relational and NoSQL databases.

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page v

D2.3 Hybrid Polystore Modelling Language
(Final Version)

1 Introduction

The need for levels of availability beyond those supported by relational databases and the challenges involved
in scaling such databases horizontally led to the emergence of a new generation of purpose-specific databases
grouped under the term NoSQL. In general, NoSQL databases are designed with horizontal scalability as a
primary concern and deliver increased availability and fault-tolerance at a cost of temporary inconsistency and
reduced durability of data.

Designing and deploying a hybrid data persistence architecture that involves a combination of relational and
NoSQL databases, and which can manage different types of structured and textual data, is a complex, tech-
nically challenging and error-prone task. Even though several techniques and tools have been introduced to
support the design and development of relational systems, standardised notations and supporting tools for de-
signing NoSQL databases are not available yet.

The aim of TYPHON is to provide an industry-validated methodology and integrated technical offering for
designing, developing, querying, evolving, analysing and monitoring architectures for scalable persistence of
hybrid data (relational, graph-based, document-based, textual etc.).

In the context of TYPHON, WP2 will develop a technical infrastructure for designing hybrid polystores taking
into account the structure of the data, the availability, partitioning and consistency requirements of different
subsets of the data and the available deployment resources. In particular, the main objectives of WP2 are the
development of the TyphonML language and supporting tools to model in a homogeneous manner, and by
abstracting the specificities of the underlying technologies, the data to be stored.

In this document, we present results of WP2 related to the following task (from the TYPHON DoW):

Task 2.1: Hybrid Polystore Modelling Language (TyphonML) Design. This task will design the
abstract syntax of TyphonML, a modular and extensible language for modelling hybrid poly-
stores. TyphonML will provide constructs for hybrid data modelling as well as facilities for
modelling availability, consistency and partitioning requirements, and the available infrastructure
on which the hybrid polystore will be deployed. The language will be defined through an iterative
process consisting of two main steps: a) elicitation of new concepts from the considered appli-
cation domains, and b) validation of the elicited and properly formalized concepts by modeling
concrete hybrid polystores.

In particular, the refinements that have been operated on the initial version of the TyphonML (initially presented
in D2.1 [3]) are motivated and presented. The needed refinements have been identified by taking into account
both Use Case and WP2 requirements elicited and presented in D1.1 [6].

1.1 Structure of the deliverable

The deliverable is structured as follows:

• Section 2 describes the process that has been followed to refine the initial version of TyphonML.
• Section 3 introduces the final version of TyphonML in terms of its abstract syntax defined by means of

EMF-based technologies.
• Section 4 presents an initial implementation of the microservice-based architecture of the hybrid poly-

store access infrastructure, and corresponding API and generator.
• Section 5 concludes the document and provides an overview of the next steps.

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 1

D2.3 Hybrid Polystore Modelling Language
(Final Version)

2 Validation of the TyphonML language

In this section we discuss the validation activities we have done on the initial version of the TyphonML lan-
guage, which was initially structured as shown in Figure 1.

TyphonML
Model

Data Types

Conceptual Entities

Databases

Relational basedDocument based

Graph based Key-Value based

Figure 1: High-level view of the initial version of TyphonML (as presented in D2.1 [3])

Figure 2 shows the TyphonML specification of the data entities to be managed by an explanatory e-commerce
system. Such entities are given in a technology independent way with the aim of defining the attributes and
the relationships of the conceptual entities that the information system being developed has to manage. Such
conceptual entities are then referred by database specific definitions (given in the same TyphonML model) as
shown on the right hand side of Figure 2. In the shown TyphonML specification, the data entities Order, User,
CreditCard, and Product will be stored in a relational database. The Product entity will be also managed by a
graph based database in order to manage the concordance of customers in buying similar products.

By referring to Figure 3 (initially presented in D2.1 [3]), this document is mainly about the activities Assess-
ment of the TyphonML expressiveness and TyphonML definition/refinement applied on the first version of the
language presented in D2.1. More specifically, by means of the Assessment of the TyphonML expressiveness
phase, actual polystore specifications are analysed in order to check if there are unforeseen requirements that
are not satisfied, or if the language does not provide modelling constructs, which are relevant to represent
the system at hand. To this end, the validation has been performed by considering the following sources of
information:

• Use Case requirements, defined by the industrial partners of the project (see Table 1)
• WP2 requirements (see Table 2)
• Development of the data access infrastructure and API (see Section 4)

According to the outcome of such a phase, in the TyphonML definition/refinement activity new concepts are
added, and the identified issues are fixed as discussed in the next section.

2.1 Validation with respect to the Use case requirements

As discussed in D1.1 [6] the industrial Use Case requirements specification is intended to provide a quantitative
view of the envisioned TYPHON solution, stating measurable criteria that should be met during the implemen-
tation of the research and development tasks within the whole project. In this respect, since TyphonML plays

Page 2 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Figure 2: Specification fragment in TyphonML of the e-commerce system presented in D2.1

a key role in the project, and underpin the data modeled and managed by all the tools developed in the tech-
nical work packages, it is necessary to validate the expressiveness of TyphonML with respect to the Use Case
requirements. In particular, in D1.1 [6] the following requirement categories are identified:

C1. Polystore modeling language
C2. Polystore modeling tools
C3. Text data modeling
C4. Polystore deployment language
C5. Polystore deployment
C6. Polystore query language
C7. Queries on structured data
C8. Queries on textual data
C9. Data analytics and monitoring

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 3

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Analysis of the
identified
Polystore

TyphonML
definition/
refinement

Polystore
modeling

Assessment of
the TyphonML
expressiveness

Representative
Polystore

identification

Figure 3: Process to define the TyphonML language

C10. Polystore data migration
C11. Interfaces
C12. General

The requirement categories that are strictly related with the work in WP2 and in particular with the definition
of the TyphonML language are C1 and C2. The other requirements categories underpin the work of other WPs.

In the following the TyphonML metamodel defined in D2.1 [3] is discussed with respect to the requirements
in C1. The requirements in C2 will be the subject for the work on the supporting modeling tools that we are
developing in the context of WP2 and that will be presented in the deliverable D2.4 – TyphonML Modelling
Tools (due at M18). All the requirements are identified in terms of the modalities SHALL, SHOULD, and
MAY defined as follows [6]:

• SHALL is used to denote an essential requirement. A typical system could not be used, would not work,
or cannot be validated if this requirement is not fulfilled. SHALL requirements are of highest priority
for validation of the platform.

• SHOULD is used to denote a requirement that would help a typical system be easier to use, or to work
better, even if it is not essential; in that case a trade-off can be achieved between development costs on
the technology side and user benefit on the system side.

• MAY is used to denote a requirement that can lead to a benefit in order to fulfil an additional evaluation
criterion or increase the usefulness of the technology. The fulfilment of the requirement is interesting
but only in view of available resources and research and development partner interests.

The requirements in the category C1 are shown in Table 1 and in the following they are discussed individually
in order to validate the expressive power of the TyphonML language. In particular, the aim of the discussion is
to check if the elicited requirements can be satisfied by means of the initial version of the TyphonML language
(in this case the requirement is marked with the symbol 3). The symbol

⊙
is used to mark requirements that

cannot be directly satisfied by the initial version of the language and demanded the refinements presented in the
next section in order to address them. The symbol 7 represents requirements that are not supported yet since
they are not strictly related to the TyphonML language and that are instead mainly related to the supporting
tools that will be finalized later in the project and presented in the next deliverables of WP2.

Page 4 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Table 1: Use case requirements (as in D1.1 [6])

1 - The polystore modelling language shall support schema and schema-less database definitions (3) Such a
requirement has played a key role during the definition of the TyphonML language specification. As shown in
the explanatory example shown in Fig. 2, different kinds of database definitions are supported by the language.

2 - The polystore modelling language shall support storing sensor data in a relational database (3) The
TyphonML language does not impose any constraints about the data to be stored in the system being developed.
Thus, modelers can define custom data types (e.g., to specify data coming from different source, including

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 5

D2.3 Hybrid Polystore Modelling Language
(Final Version)

sensors) and specify in which database systems corresponding data has to be stored (i.e., in relational or
NoSQL technologies).

3 - The polystore modelling language should support modelling of existing data stores (3) The language
has been developed in collaboration with the TYPHON use case providers. Thus, the expressive power of
TyphonML has been continuously checked in order to enable the specification of their existing data sources.

4 - The polystore modelling language shall support storing recorded trend displays (
⊙

) To satisfy such a
requirement, TyphonML language has to support the definition of custom data types, enabling also the imple-
mentation of the corresponding behaviour. This was not completely possible in the previous version of the
language as discussed in Section 2.3.

5 - The polystore modelling language should be able to support the storing of query results as cases (3) Such
a requirement can be satisfied by properly defining at the conceptual level, the needed entities and relations
that developers want to possibly use to store query results.

6 - The polystore modelling language shall support field types and operations to handle spatial data and per-
form basic operations for ingestion, querying and filtering (

⊙
) This requirement is related to the possibility of

defining custom data-types. Even though the initial version of the language enabled the syntactically specifi-
cation of new data types, the definition of the corresponding implementation was not possible yet as described
in Section 2.3.

7 - The polystore modelling language shall support a field type that allows to store a Latitude and Longitude
values (e.g. "LatLon") (

⊙
) This requirement is related to the previous one and it was not fully satisfied by the

initial version of the TyphonML language.

8 - The polystore modelling language shall support a field type that allows to store a non-geodetic, general X
and Y coordinates (e.g. SpatialType) (

⊙
) The initial version of the language enabled the definition of custom

data types like SpatialType. However, the proper management of such data of this type was not possible yet.

9 - The polystore modelling language shall support a field type that allows to store a bounding box (e.g.
"BoundingBox") (

⊙
) This is similar to the previous requirement and was affected by the same limitations of

the initial version of the TyphonML language.

10 - The polystore modelling language should provide data types to store binary fields (
⊙

) The initial version
of TyphonML did not provide modeler with native data types enabling the specification and management of
binary fields.

11 - The polystore modelling language should allow to handle records with binary fields of up to 2 GB (7)
This requirement is partially related to the previous one. However, limitations about space constraints are not
related to the language and refers to the particular technologies that will be used to manage the data that are
specified at the TyponML level.

12 - The polystore modelling language should support additional spatial types as defined by the Lucene inter-
face (

⊙
) The initial version of the language was not expressive enough to specify custom data types enabling

some searching optimizations.

13 - The polystore modelling language should implement the spatial data types and related operations as
defined by "OpenGIS Implementation Standard for Geographic information - Simple feature access - Part 2:
SQL option" (

⊙
) TyphonML does not provide modelers with any native domain specific data types. Even

though the initial version of the language enabled the definition of custom data types, their management was
not possible yet.

Page 6 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D2.3 Hybrid Polystore Modelling Language
(Final Version)

2.2 Validation with respect to technical requirements of WP2

As previously done, in this section we use the symbol (3) to identify WP2 requirements (shown in Table 2)
that are already satisfied by the initial version of the TyphonML language as presented in D2.1 [3]. The symbol
(
⊙

) is used to identify WP2 requirements that are not satisfied by the initial version of the language, but will
be fixed by the improved version of TyphonML as presented in the next section. Additionally, we use the
symbol (7) for requirements that are not related to the TyphonML language but on supporting modeling tools
that are planned to be delivered in the forthcoming months of the project.

D1 - TyphonML shall enable the specification of data entities and relationships that will be stored in different
and heterogeneous databases (3) As shown in the explanatory example shown in Fig. 2, the initial version
of the TyphonML language already enabled the definition of conceptual entities and the specification of the
logical and physical elements devoted to manage the specified entities.

D2 - TyphonML shall enable the specification of data models by means of both textual and graphical syntaxes
(7) This requirement is not related to the TyphonML definition tasks and refers to the supporting modeling

Table 2: WP2 requirements (as in D1.1 [6])

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 7

D2.3 Hybrid Polystore Modelling Language
(Final Version)

tools that modelers can use to develop polystores. However, a textual editor for TyphonML has been already
implemented and the graphical one is planned later in the project.

D3 - Facilities for generating CRUD APIs from data models specified in TyphonML shall be provided (
⊙

)
This was not addressed in D2.1 and it has been one of the refinement objectives addressed in this document as
described in the next sections.

D4 - Definition of custom data types to be used in TyphonML data models shall be supported (
⊙

) This was
not fully addressed by the initial version of the language. Modelers had the possibility to specify custom data
types only syntactically without any means to define the corresponding implementations.

D5 - Specification of data types that are needed for applying text-specific analysis (e.g. text, video, recordings)
shall be supported (

⊙
) Even though primary data types were supported by the language, text-specific ones

enabling natural language analysis were not available.

D6 - The definition of structured data types (e.g. sentences, facts, entities, events) that can be extracted from
text and represented in TyphonML shall be supported (

⊙
) This requirement was not addressed at the time of

D2.1 [3] delivering. However, it is now addressed as presented in deliverable D2.2 [5], which is delivered at
M12 together with this document to present the results of the work lead by Edge Hill University on natural
language analysis.

D7 - The specification of non-functional requirements that will instruct the deployment and querying of the
modelled data models shall be supported (7) TyphonML permits modelers to specify in different ways how to
store and manage the modeled conceptual entities. However, at this stage we have not investigated yet which
non-functional requirements are needed to affect the deployment of the modeled data entities. This aspect will
be investigated in collaboration with WP3 and WP4 in the context of Task 2.4: Analysis and Reasoning on
TyphonML Models.

D8 - TyphonML supporting tools shall detect inconsistent data models (e.g. data entities in relational databases
that refer to inexistent collections in document-based data models) (7) This requirement is related to the pre-
vious one and it will be one of the subjects to be investigated in the context of Task 2.4 whose results will be
presented in the deliverable D2.5 – TyphonML Model Analysis and Reasoning Tools.

D9 - TyphonML supporting tools may provide modellers with early feedback about the specified data models
(i.e. deployment feasibility of the modelled data with respect to the actual resource availabilities) (7) The
supporting modeling tools of the TyphonML are planned to be released at M18 as the main objectives of
deliverable D2.4 – TyphonML Modelling Tools.

D10 - TyphonML editors should be instructed to resolve inconsistencies in the data schema that might be due
to system and data evolutions (7) The fulfilment of such requirement involves a tight collaboration between
WP2 and WP6. In particular, the schema and data evolution operators being conceived in WP6 have to be
shown to modelers that will trigger them directly from the TyphonML modeling tools. Such an integration will
be fully investigated in the context of D2.4 – TyphonML Modelling Tools even though initial results have been
already obtained as presented in the next sections.

D11 - The data migration tools shall define the list of schema changes that can be automatically managed
for coupled evolution goals. Such a catalogue of schema changes will be enforced during TyphonML editing
sessions that are devoted only to schema evolution purposes (

⊙
) The initial version of the TyphonML language

was not supporting the specification of model changes with respect to a set of available change operators. The
initial version of TyphonML has been refined in order to include them as described in the next section.

Page 8 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D2.3 Hybrid Polystore Modelling Language
(Final Version)

2.3 Summary of the requirements not satisfied by the initial version of Ty-
phonML

By considering the discussion given above, the requirements that were not addressed by the initial version of
the TyphonML language as presented in the deliverable D2.1 [3] are shown in Table 3, which shows for each
requirement in which document its fulfilment is or will be achieved. Most of the requirements are addressed
in Sec. 3 of this document.

Req.
ID

Req. description Addressing deliv-
erable

4 The polystore modelling language shall support storing recorded trend displays D2.3 - Sect. 3
6 The polystore modelling language shall support field types and operations to handle

spatial data and perform basic operations for ingestion, querying and filtering
D2.3 - Sect. 3

7 The polystore modelling language shall support a field type that allows to store a
Latitude and Longitude values (e.g. "LatLon")

D2.3 - Sect. 3

8 The polystore modelling language shall support a field type that allows to store a non-
geodetic, general X and Y coordinates (e.g. SpatialType)

D2.3 - Sect. 3

9 The polystore modelling language shall support a field type that allows to store a
bounding box (e.g. "BoundingBox")

D2.3 - Sect. 3

10 The polystore modelling language should provide data types to store binary field D2.3 - Sect. 3
11 The polystore modelling language should allow to handle records with binary fields

of up to 2 GB
D2.3 - Sect. 3

12 The polystore modelling language should support additional spatial types as defined
by the Lucene interface

D2.3 - Sect. 3

13 The polystore modelling language should implement the spatial data types and related
operations as defined by "OpenGIS Implementation Standard for Geographic infor-
mation - Simple feature access - Part 2: SQL option"

D2.3 - Sect. 3

D2 TyphonML shall enable the specification of data models by means of both textual and
graphical syntaxes

D2.4

D3 Facilities for generating CRUD APIs from data models specified in TyphonML shall
be provided

D2.3 - Sect. 4

D4 Definition of custom data types to be used in TyphonML data models shall be sup-
ported

D2.3 - Sect. 3

D5 Specification of data types that are needed for applying text-specific analysis (e.g. text,
video, recordings) shall be supporte

D2.3 - Sect. 3

D6 The definition of structured data types (e.g. sentences, facts, entities, events) that can
be extracted from text and represented in TyphonML shall be supported

D2.2

D7 The specification of non-functional requirements that will instruct the deployment and
querying of the modelled data models shall be supported

D2.5

D8 TyphonML supporting tools shall detect inconsistent data models(e.g. data entities in
relational databases that refer to inexistent collections in document-based data models

D2.4, D2.5

D9 TyphonML supporting tools may provide modellers with early feedback about the
specified data models (i.e. deployment feasibility of the modelled data with respect to
the actual resource availabilities)

D2.4, D2.5

D10 TyphonML editors should be instructed to resolve inconsistencies in the data schema
that might be due to system and data evolutions

D2.4

D11 The data migration tools shall define the list of schema changes that can be automati-
cally managed for coupled evolution goals. Such a catalogue of schema changes will
be enforced during TyphonML editing sessions that are devoted only to schema evo-
lution purposes

D2.3 - Sect. 3

Table 3: Summary of the requirements that were not addressed by the initial version of TyphonML
as presented in D2.1 [3]

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 9

D2.3 Hybrid Polystore Modelling Language
(Final Version)

3 The revised TyphonML language

In this section the refined version of the TyphonML language is presented. A bird eye view of the language
is shown in Fig. 4 and the main additions/refinements are depicted as boxes with darker color. In particular,
in order to address the requirements that were not met by the initial version of the language, the language has
been refined by adding modeling constructs enabling the specification of i) changes to be operated on existing
TyphonML models, ii) custom datatypes, and iii) types enabling the application of natural language analysis
techniques. In order to make this document self-contained, in this section we report also the constructs of the
TyphonML metamodel that have not been subject to any change since the initial version. The new metamodel
elements that have been added during the second stage of the language design process are presented in Section
3.6 and Section 3.7. Refinements have been also operated to the CustomDataType metaclass as discussed in
the following.

TyphonML
Model

Data Types

Conceptual Entities

Databases

Relational basedDocument based

Graph based Key-Value based

Evolution
operators

Primitive Types Custom TypesNLP Enabler Types

Figure 4: High-level view of the refined TyphonML

The metaclasses implementing the high-level view in Figure 4 are shown in Figure 5 and are described below.

Model This represents the root container of each TyphonML specification, which in turn consists of two
element sets. In particular, a model element consists of the following structural features:

• dataTypes: it permits to specify all the data types that are used by the system being modeled. As de-
scribed in the following, the language permits to specify both primitive and complex data types including
the conceptual entities to be stored;

• databases: it permits to represent all the databases that will be used to actually store the conceptual
entities in a polystore infrastructure;

PrimitiveDataType It permits to represent primitive data types like string, data, integer, real, etc.

CustomDataType It extends the abstract DataType metaclass in order to enable the specification of custom
data types. To this end, each CustomDataType instance consists of different elements, which overall contribute
the definition of the new data type being defined. For instance, in order to represent geographical points of

Page 10 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Figure 5: Main metaclasess of the TyphonML metamodel

interest, users can define a GPS_location type consisting of two DataTypeItem elements, i.e., latitude and lon-
gitude. Such data items would be of primitive types (e.g., real). With respect to the initial version of the
language, this metaclass has been refined in order to give the possibility to specify the software components/-
packages that actually implement the data being defined. For instance, the custom data type defining GPS
locations should refer also to the Java classes implementing the getter, setter methods, which are specific to the
data type being defined. To this end, a CustomDataType can refer to different DataTypeItems.

DataTypeItem It is used to refer the software component/package implementing a new custom datatypes. To
this end, each DataTypeItem refers to a DataTypeItemPackage instance, which contains the location of the
software package to be considered.

Entity It plays a key role in the language, since it permits to specify the conceptual entities be managed by
the information system being developed. Each entity is defined by means of attributes and relations (see the
metaclasses Attribute and Relation, respectively).

Attribute It is a named element, which is defined in terms of the type of elements to be represented. As shown
in Figure 5, the type structural feature is typed DataType and consequently it can be a primitive, custom, or
even entity type.

Relation It is a named element, which permits to specify relationships between different entities. In particular,
the structural features of such modeling constructs are the following:

• type: it permits to define the type of the relationship being specified;
• cardinality: entities can be involved in relationships of different cardinalities, which can be singular or

multiple;
• opposite: when creating a reference from one entity (e.g., named e1) to a second entity (e.g., named e2)

it is possible to specify the opposite reference from e2 to e1 in order to define a bidirectional relation
instead of two different unidirectional ones.

• isContainment: it is a boolean attribute, which permits to specify if the target entity is contained (e.g.,
to trigger cascade-deletion) or not in the entity being modeled.

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 11

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Database It is an abstract concept, which is specialized in order to specifically represent different kinds of
database systems. The currently supported specializations are RelationalDB, DocumentDB, KeyValueDB,
ColumnDB, and GraphDB as detailed in the following subsections.

ChangeOperator It is an abstract concept, which is specialized with concrete evolution operators as detailed
in Section 3.6.

3.1 Relational database concepts

The TyphonML concepts enabling the specification of relational databases are shown in Figure 6 and singularly
described in the following.

RelationalDB It permits to enhance the conceptual elements defined by means of the modeling constructs
previously presented with the aim of specifying which entity should be stored in a relational database and how.
To this end, modelers will define the tables that are needed to store the entity of interests (see the metaclass
Table below).

Table It is a named element, which is defined in terms of the following structural features:

• entity: it is a reference that permits modelers to specify the data entity that need to be stored in the
relational database being specified;

• indexSpec: in order to improve the performance of the queries to be evaluated on the relational database
being developed, it is possible to adopt indexing mechanisms. In this respect, the language permits to
specify the attributes of the table being specified that should be indexed (see the metaclass IndexSpec);

Figure 6: Relational database concepts

Page 12 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D2.3 Hybrid Polystore Modelling Language
(Final Version)

• idSpec: such a reference is used to define the list of attributes that permit to identify elements in a unique
way (see the metaclass IdSpec).

IndexSpec Such a metaclass permits modelers to specify the attributes and the references that are part of the
index to be created for improving the performance of query executions.

IdSpec It is the metaclass that enables the specification of the table identifiers, which consist of references to
entity attributes.

3.2 Document database concepts

The constructs of the TyphonML metamodel that enable the specification of document databases are shown in
7 and described below.

Figure 7: Document database concepts

DocumentDB As summarized in the previous section, document databases are used to store collections of
heterogeneous elements. Such a metaclass consists of the reference collections in order to specify the data
entities that each collection should store.

Collection Each collection is devoted to store the data of the referred conceptual data entity;

3.3 Key-value database concepts

As discussed in the previous section, key-value stores consist of sets of key-value pairs with unique keys. To
this end the metaclasses shown in Figure 8 have been defined.

KeyValueDB It permits modelers to specify aggregations of elements to be stored in key-value pairs.

KeyValueElement Such a metaclass consists of the following two structural features:

• key: it is a string attribute to store the key of the pair being specified;
• values: it is DataType typed reference of multiple cardinality. Thus, the content of the pair being

modeled can be an aggregation of heterogeneous data even related to different conceptual entities (see
the specializations of the DataType metaclass shown in Figure 5).

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 13

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Figure 8: Key-value database concepts

3.4 Graph database concepts

In order to enable the specification of graph databases, TyphonML provides modelers with the modeling con-
structs shown in Figure 9 and described below.

GraphDB It is a specialization of the abstract Database metaclass and permits modelers to specify how the
data of interest should be stored in a graph-like structure. Thus, the structural features of the metaclass are the
following:

• nodes: it is a containment reference used to create nodes in the data structure being modeled;

Figure 9: Graph database concepts

Page 14 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D2.3 Hybrid Polystore Modelling Language
(Final Version)

• edges: it is a containment used to create edges connecting nodes in the data structure being modeled;

GraphNode It permits modelers to specify the nodes of the data structure being modeled and consists of the
following structural features:

• entity: it is a reference to be used to specify the conceptual entity that has to be managed by means of
the graph database being specified;

• attributes: further than conceptual entities, modelers might want to specify additional attributes to be
stored in each node of the graph.

GraphAttribute As previously mentioned, modelers can specify node attributes and retrieve their values from
attributes of conceptual entities (see the reference value in Figure 9 between the GraphAttribute and Attribute
metaclasses).

GraphEdge It consists of the structural features that are needed to specify the source and target nodes of the
edges being specified. Additional labels can be also defined. In particular,

• from: it is the reference that permits to specify the starting node of the edge being modeled;
• to: it is the reference that permits to specify the target node of the edge being modeled:
• labels: it is a containment reference to create GraphEdgeLabel elements defined below;

GraphEdgeLabel It permits to define labels to be attached to edges of the graph-based structure being mod-
eled. Each label is a named element and consists of the corresponding type that can be primitive, custom, or
even an entity type (see in Figure 5 the specializations of the metaclass DataType).

3.5 Column database concepts

As summarized in the previous section, columns databases permit to store data by column. To this end,
TyphonML provides modelers with the ColumnDB and Column metaclasses shown in Figure 10.

Figure 10: Column database concepts

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 15

D2.3 Hybrid Polystore Modelling Language
(Final Version)

ColumnDB Column databases store groups of columns for all rows as the basic storage unit. Thus, the
ColumnDB metaclass consists of the reference columns, which permits to create Column elements defined
below.

Column It permits to specify the attributes (defined in the conceptual entities) that should be stored in the
column being modeled.

3.6 TyphonML change operators

According to the collaboration established with WP6, the TyphonML language has been refined in order to
provide modelers with constructs that are necessary to specify changes (directly from the modeling tools) to
be operated on existing TyphonML specifications. The changes that the migration tools being developed in
WP6 are able to automatically manage are those shown in Table 4. It is important to remark that this document
discusses the available change operators from a syntactical point of view. The semantics of the available
operators in terms of the actual actions that are executed to perform the specified changes is detailed in the
deliverable D6.2 [4].

To support the change operators in Table 4 the TyphonML has been refined by adding the metamodeling
elements, which extend the new ChangeOperator metaclass shown in Fig. 4 as described in the following.

3.6.1 Change operators for conceptual elements

Figure 11 shows the metaclasses related to the operators that are available for changing existing TyphonML
specifications with respect to conceptual entities. In particular, the language permits modelers to add new en-
tities (see the AddEntity metaclass), remove existing ones (RemoveEntity), and even rename them (RenameEn-
tity). Modelers have also the possibility to split (horizontally or vertically [4]) an existing entity (SplitEntity)

Figure 11: Operators for specifying Entity changes

Page 16 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D2.3 Hybrid Polystore Modelling Language
(Final Version)

TyphonML element Level Change operator

Entity Conceptual

Add
Remove
Rename
Split
Migrate
Merge

Relationship Conceptual

Add
Remove
Rename
Enable containment
Disable containment
Enable bidirectional relationship
Disable bidirectional relationship
Change cardinality

Attribute Conceptual

Add
Change type
Remove
Rename

Table Logical/Database Rename

Identifier Logical/Database

Add
Add component
Remove
Remove component
Rename

Index Logical/Database

Add
Remove
Add component
Remove component

Collection Logical/Database
Rename
Add Index
Drop Index

Table 4: Supported change operators (from D6.2 [4])

or merge two of them in a new one (MergeEntity). TyphonML permits also to move a conceptual entity from
a given database type to another one (MigrateEntity).

Figure 12 shows the metaclasses related to the operators that are available for changing existing TyphonML
specifications with respect to conceptual relationships. According to the metamodel fragment shown in Fig. 12,
relationships can be added (AddRelation), removed (RemoveRelation), renamed (RenameRelation), made bidi-
rectional or unidirectional (ChangeRelationBidirectionality). Moreover, it is also possible to change their car-
dinality (ChangeRelationCardinality) and specify different containment prescriptions (ChangeRelationCon-
tainment).

Figure 13 shows the metaclasses related to the operators that are available for changing existing TyphonML
specifications with respect to attributes of given conceptual entities. According to the metamodel fragment
shown in Fig. 13, attributes can be added to entities (AddAttribute), removed (RemoveAttribute), renamed
(RenameAttribute), and also can change their type (ChangeAttributeType).

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 17

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Figure 12: Operators for specifying Relationship changes

Figure 13: Operators for specifying Attribute changes

3.6.2 Change operators for logical elements

TyphonML enables also the specification of changes to be operated at logical level. Figure 14 shows modifica-
tions that modelers might want to operate on tables in case of relational databases. In particular, it is possible to
rename existing tables (see the metaclass RenameTable in Fig. 14) and also specify changes on corresponding
table identifiers and indexes. In particular, modelers can add or remove entity identifiers (see AddIdentifier and
RemoveIdentifier, respectively), further than changing the composition of the existing identifiers in terms of
the constituting attributes (see AddAttributesToIdentifier, and RemoveAttributesToIdentifier). Moreover, mod-
elers can add and remove table indexes (see AddIndex and DropIndex, respectively), further than changing

Page 18 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Figure 14: Operators for specifying logical changes involving Table, Identifier, and Index elements

the attributes that are considered for indexing the contents of the table being modified (see the metaclassess
RemoveAttributesToIndex and AddAttributesToIndex).

Figure 15 shows the operator changes to be operated at logical level on database systems based on collec-
tions. In particular, the changes that are supported are collection renaming (RenameCollection), and addition
(AddCollectionIndex), and removal (DropCollectionIndex) of indexes for the collection being modified.

Figure 15: Operators for specifying logical changes involving Collection elements

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 19

D2.3 Hybrid Polystore Modelling Language
(Final Version)

3.6.3 Use of the TyphonML change operators

It is important to remark that the change operators presented in the previous section are intended to support
evolution and migration scenarios as detailed in the deliverable D6.2 [4]. In particular, as shown in Fig. 16,
starting from an existing and already deployed TyphonML model, modelers might have the need of operating
conceptual and logical changes to the managed data. To this end, modelers can specify the needed changes by
exploiting an evolution editing mode being provided by the TyphonML modeling editors (that are planned to
be released at M18). In such a mode, only sequential applications of the operators described in the previous
section are allowed in terms of Evolution Scripts as shown in Fig. 16. Such sequences are consumed by the
evolution tools being developed in WP6 in order to perform all the tasks that are needed to evolve and migrate
the existing polystore and bring it to a new state, which is consistent with respect to the new TyphonML
specification (see Evolved TyphonML model in Fig. 16).

TyphonML model
Model

Transformation
Evolved TyphonML

model

Evolution scripts

Evolution
technologies

Polystore to
be evolved

Evolved
Polystore

Figure 16: Use of the TyphonML change operators

3.7 Enabling natural language processing

In order to enable advanced text analysis, Edge Hill University (EHU) is working on natural language process-
ing tasks that can be applied on polystores, which are modeled by means of TyphonML.

As detailed in D2.2 [5], different text processing tasks have been elicited by EHU; the enumeration NlpTask-
Type shown on the left end side of Fig. 17 has been defined so to enable the application of all the text processing
tasks elicited so far by EHU. Such tasks are enabled on all the conceptual attributes that are typed by model-
ers as FreeText. Details about the analysis and the management of FreeText attributes are given in D2.2. For
the sake of this document, it is enough to mention that an Elasticsearch1 back-end is configured to enable the
application of natural language processing tasks as specified in the TyphonML models.

1https://www.elastic.co/

Page 20 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Figure 17: Freetext data type and corresponding natural language processing tasks

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 21

D2.3 Hybrid Polystore Modelling Language
(Final Version)

4 Hybrid Polystore Access Infrastructure and API

The metamodel presented in the previous section has been implemented as an EMF/Ecore [1] model. An initial
version of the Eclipse-based TyphonML textual editor has been also developed by means of Xtext2. We plan
to implement and release at M18 also a graphical editor in order to satisfy the requirements of the TYPHON
industrial partners that have explicitly expressed the needs for both textual and graphical editors.

TyphonML
Data Access Layer

Generation
Polystore API

MongoDB

Cassandra

MySQL

…

Migration
technologies

(WP6)

Deployment
technologies

(WP3)

Query
technologies

(WP4)

Analytics and Monitoring
technologies

(WP5)

…

depends / makes use of

input / output

(software) artifact

Synthesis activity

Legend

Figure 18: Use of TyphonML specifications

Further than underpinning the implementation of textual and graphical editors, the TyphonML metamodel
plays a key role also for developing additional supporting tools including the software able to generate ready-
to-use APIs (see Figure 18) through which application developers are able to perform CRUD (create, read,
update and delete) operations and queries on the modeled hybrid polystores.

This section presents the details about the Data Access Layer Generation tools that have been developed to
automatically generate a Polystore API out of an input TyphonML model.

4.1 A microservice-based architecture for the Polystore API

Lewis and Fowler define the microservice architectural style as an approach for developing a single application
as a suite of small services, each running in its own process and communicating with lightweight mechanisms,
often an HTTP resource API [2]. Microservices allow large systems to be built up from many collaborating
components. These services are built around business capabilities and independently deployable by fully
automated deployment machineries. There is a bare minimum of centralized management of these services,
which may be written in different programming languages and use different data storage technologies.

By adhering to such microservice principles, we conceived the architecture model shown in Fig. 19 to manage
any polystore, which is modeled by means of TyphonML. In particular, each modeled database system induces
the creation of a corresponding microservice, which is responsible of managing all the conceptual entities that
have been assigned to that database system. The architecture consists of a Client Library that is a library that

2https://www.eclipse.org/Xtext/

Page 22 Version 1.0
Confidentiality: Public Distribution

22 December 2018

https://www.eclipse.org/Xtext/

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Figure 19: Proposed microservice-based architecture for the Polystore API

can be used by the developers and interacts with the interfaces exposed by the API Gateway. The API Gateway
is the service that knows where all the services managing the conceptual entities are deployed, and thus it is
aware of where the client requests have to be forwarded to. The system is also able to manage relationships
occurring among entities stored in different database systems, and thus managed by different microservices.

It is important to remark that the actual implementation of the architecture shown in Fig. 19 relies on the
Spring Framework3. In particular, the following technologies are used:

• Spring Boot4: it makes easy to create stand-alone, production-grade Spring based Applications;
• Spring Data5: it is a project that contains many subprojects that are specific to a given database. It

defines a Spring-based programming model for data access while still retaining the special traits of the
underlying data store and it makes easy to use different data access technologies e.g., relational and
non-relational databases, map-reduce frameworks, and cloud-based data services.

• Spring Cloud6: it provides tools for developers to quickly build some of the common patterns in dis-
tributed systems (e.g. configuration management, service discovery, circuit breakers, intelligent routing,
micro-proxy, control bus, one-time tokens, global locks, leadership election, distributed sessions, cluster
state).

Spring Data plays a key role in the proposed approach since it is used to actually access data. Such a layer
can be potentially replaced by or used in conjunction with the access layer provided by WP4 once available,
without disrupting the generation of the proposed polystore access infrastructure.

As shown in Fig. 18, the Polystore API that reflects the architecture shown in Fig. 19 is automatically generated
from the given TyphonML model. In the next sections, details about such a data access layer generation are
given.

3https://spring.io/
4https://spring.io/projects/spring-boot
5https://spring.io/projects/spring-data
6https://spring.io/projects/spring-cloud

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 23

https://spring.io/
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-data
https://spring.io/projects/spring-cloud

D2.3 Hybrid Polystore Modelling Language
(Final Version)

4.2 The Data Access Layer Generation Process

The generation of the data access layer out of an input TyphonML model has been developed as a set of
coordinated model-to-code transformations. To this end, Acceleo 7 has been adopted. It is an open-source
code project belonging to the Eclipse ecosystem 8 that allows developers to employ model-driven principles
to build applications. An Acceleo based generator consists of several modules, each specified in terms of
templates (that are sets of Acceleo statements used to generate text) and/or queries (to extract information
from the manipulated models).

Figure 20: Generation Process.

The developed generator9 is shown in Fig.20 and consists of the following Acceleo modules:

• mainGenerator.mtl: it mainly orchestrates the execution of the other modules;
• clientGenerator.mtl: it deals with the generation of the Client Library service;
• serviceGenerator.mtl: it deals with the generation of all the entity services with all the information

needed by the Spring Data framework to initialize the proper databases);
• apigatewayGenerator.mtl: it deals with the generation of the Api Gateway service;
• utilityGenerator.mtl: it produces utility functions that are exploited at run-time by the generated system.

In the following, the different Acceleo modules are described with more details. In particular, the TyphonML
model on the left-hand side of Fig. 21 representing the conceptual entities shown in Fig. 22. is taken as input,
and the target application shown in the lower hand side of Fig. 21 is generated.

Main Generator As shown in the code fragment in Fig. 23, the main generator module has the role of
executing all the other modules by applying them on the input TyphonML model.

7https://www.eclipse.org/acceleo/
8https://www.eclipse.org/
9https://github.com/typhon-project/typhonml/tree/master/it.univaq.disim.

typhon.acceleo

Page 24 Version 1.0
Confidentiality: Public Distribution

22 December 2018

https://www.eclipse.org/acceleo/
https://www.eclipse.org/
https://github.com/typhon-project/typhonml/tree/master/it.univaq.disim.typhon.acceleo
https://github.com/typhon-project/typhonml/tree/master/it.univaq.disim.typhon.acceleo

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Figure 21: Sample application of the proposed generation process

Figure 22: Data entities of an explanatory e-commerce system

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 25

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Figure 23: Fragment of the Main Generator module

Client Generator This module is demanded to create all the files needed to build the Client Library (see
Fig.19) that will be used by developers to perform their operations over the microservices architecture. Essen-
tially it cycles over all the model entities (see Fig.24.a) in order to build a Java project with all the services
for all the entities in the source model (see Fig.24.b). A fragment of the source code implementing the service
managing Order elements is shown in Fig. 24.c.

Figure 24: a) Fragment of the Client Generator b) Structure of the generated Client Library project
c) Fragment of the generated OrderService

Page 26 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Services Generator This module creates as many services as the entities modelled in the TyphonML
model. For each service a corresponding Java project is generated (see Fig. 25). For instance, by considering
the online shop model shown in Fig. 22, the Order has been assigned to a document database, whereas the
Product is assigned to a relational database. Thus, the Service Generator adds the right annotation, which
is then properly consumed by the Spring Data framework as shown in the generated Order and Product Java
classes as shown in Fig.26.a and Fig.26.b, respectively.

Figure 25: a) Fragment of the Service Generator module b) A generated service project

Figure 26: a) Document database Spring Data Annotation example (Order Entity) b) Relational
database Spring Data Annotation example (Product Entity)

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 27

D2.3 Hybrid Polystore Modelling Language
(Final Version)

API Gateway Generator The critical aspect of the API Gateway is its ability to forward to the right
services the requests coming from the Client Library. To this end, the API gateway needs to know all the
available services, the ports they are listening to, etc. To this end, the API gateway generator iterates on all the
conceptual entities and properly assigns them a progressive number in which the related service is listening
(see Fig.27). This port number will be the same port that is assigned to each service by the Service Generator.

Figure 27: Fragment of the API Gateway Generator module

Utility Generator The Utility Generator module generates all the utility templates and queries that are
used during the generation processes. For example, concerning the services mapped in the API Gateway and
the actual services created by the Service Generator, it is essential that they get the same port number (so that
the can communicate with each other), and to do so the way to collect the entities from the model have to be
consistent. So it has been centralized in this utility module the query that does that. For instance, Fig.28 shows
a query that through an OCL construct retrieves all the entities and sort them based on their name.

4.3 Managing data relationships

One of the critical aspects that have been taken into account when developing the polystore API generator has
been the management of the data relationships linking entities that are stored in different databases, and thus
that are managed by different microservices. To this end, additional attributes are added in the logical schemas

Page 28 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Figure 28: Fragment of the Utility Generator module

managing the related entities by distinguishing one-to-many and many-to-many relationships as described in
the following.

4.3.1 One-to-Many relationships

An explanatory example of one-to-many relationship is shown in Fig.22 between the User and Order entities
(i.e., a user can have several orders). According to the input TyphonML model, the generator described in the
previous section generates one microservice for managing User objects (that are stored in a MySQL database),
and one microservice for managing Order objects (that are stored in a MongoDB database). As shown in
Fig.29, the userdb contains a table user_orders to manage the relations among user and order objects. Orders
are referenced by means of strings representing order IDs.

The management of such a relation is performed by the Client Library service in a transparent manner for the
developer. For instance, the User.java file generated because of the User entity contains the getOrderObj()
method (see Fig. 30), which deals with the recovery of referenced data in a lazy loading10 manner.

4.3.2 Many-to-Many relationships

Many-to-Many relationships are managed in a manner, which is similar to the one-to-many case. An exam-
ple of many-to-many relationship is shown in Fig.22 between the Order and Product entities. The latter is
managed by a MySQL database. In such cases, the generator add specific elements in the logical schemas to
enable the retrieval of linked objects. For instance, as shown on the left-hand side of Fig. 31, the order collec-
tions contain the array orderProducts to refer the Product elements that are contined in the considered orders.
Moreover, as shown on the right-hand side of the same figure, the productdb database constains the table prod-
uct_product_orders to manage the relationship between product and order objects. Such details are completely
hidden to the developers, who are provided with the Client Library that allows to navigate relationships by
means of dedicated methods (see Fig. 32) in the corresponding generated Product.java and Order.java files
(see Fig.24.b).

10https://en.wikipedia.org/wiki/Lazy_loading

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 29

https://en.wikipedia.org/wiki/Lazy_loading

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Figure 29: One-to-Many mapping example

Figure 30: Method of the User class retrieving related Order objects

Page 30 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D2.3 Hybrid Polystore Modelling Language
(Final Version)

Figure 31: Many-to-Many Mapping Example

Figure 32: a) Fragment of the getProductObj in the generated Order class b) Fragment of the
getOrderObj() in the generated Product class

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 31

D2.3 Hybrid Polystore Modelling Language
(Final Version)

5 Conclusions

In this document we presented the results of WP2 related to the design and development of the TyphonML
language aiming at supporting the design and development of hybrid polystores. The changes performed on
the initial version of the language as presented in the deliverable D2.1.

The expressiveness of the language has been assessed i) by considering the WP2 and use case requirements
elicited during the first six months of the project and detailed in the deliverable D1.1, and ii) by developing
the tools that are able to automatically generate the data access layer infrastructure out of source TyphonML
specifications.

It is important to recall that the TyphonML model will underpin the development of the corresponding model-
ing tools providing developers with both textual and grapical editors. Thus, we expect some minor refinements
of the TyphonML metamodel also to meet the technical requirements of the tools being developed in the other
workpackages.

Page 32 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D2.3 Hybrid Polystore Modelling Language
(Final Version)

References

[1] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T.J. Grose. Eclipse Modeling Framework. Addison
Wesley, 2003.

[2] M. Fowler and J. Lewis. Microservices a definition of this new architectural term. url: http://
martinfowler.com/articles/microservices.html.

[3] The University of L’Aquila. D2.1 – Hybrid Polystore Modelling Language (Interim Version), 2018.

[4] The University of Namur. D6.2 – Hybrid Polystore Schema Evolution Methodology and Tools, 2018.

[5] The Edge Hill University. D2.2 – Text Modelling Extension, 2018.

[6] The Open Group with contributions from all partners. D1.1 - Project Requirements, 2018.

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 33

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

	Introduction
	Structure of the deliverable

	Validation of the TyphonML language
	Validation with respect to the Use case requirements
	Validation with respect to technical requirements of WP2
	Summary of the requirements not satisfied by the initial version of TyphonML

	The revised TyphonML language
	Relational database concepts
	Document database concepts
	Key-value database concepts
	Graph database concepts
	Column database concepts
	TyphonML change operators
	Change operators for conceptual elements
	Change operators for logical elements
	Use of the TyphonML change operators

	Enabling natural language processing

	Hybrid Polystore Access Infrastructure and API
	A microservice-based architecture for the Polystore API
	The Data Access Layer Generation Process
	Managing data relationships
	One-to-Many relationships
	Many-to-Many relationships

	Conclusions

